Круговорот веществ в природе
Круговорот веществ в природе
МИНИСТЕРСТВО НАУКИ И ОБРАЗОВАНИЯ УКРАИНЫ
ОШ №5
Реферат
на тему:
КРУГОВОРОТ веществ В ПРИРОДЕ
Выполнила:
ученица 8-Б класса
ОДЕССА
2003
Содержание.
| |Лист. |
|1. Биогеохимические круговороты. |3 |
|2. Круговорот веществ в биосфере. |6 |
|3. Круговорот кислорода. |7 |
|4. Круговорот воды. |8 |
|5. Антропогенные воздействия на окружающую среду. |9 |
|Использованная литература. |11 |
1. Биогеохимические круговороты.
В отличие от энергии, которая однажды использованная организмом,
превращается в тепло и теряется для экосистемы, вещества циркулируют в
биосфере, что и называется биогеохимическими круговоротами. Из 90 с лишним
элементов, встречающихся в природе, около 40 нужны живым организмам.
Наиболее важные для них и требующиеся в больших количествах: углерод,
водород, кислород, азот. Кислород поступает в атмосферу в результате
фотосинтеза и расходуется организмами при дыхании. Азот извлекается из
атмосферы благодаря деятельности азотофиксирующих бактерий и возвращается в
неё другими бактериями.
Круговороты элементов и веществ осуществляются за счёт
саморегулирующих процессов, в которых участвуют все составные части
экосистем. Эти процессы являются безотходными. В природе нет ничего
бесполезного или вредного, даже от вулканических извержений есть польза,
так как с вулканическими газами в воздух поступают нужные элементы,
например, азот.
Существует закон глобального замыкания биогеохимического круговорота в
биосфере, действующий на всех этапах её развития, как и правило увеличения
замкнутости биогеохимического круговорота в ходе сукцессии. В процессе
эволюции биосферы увеличивается роль биологического компонента в замыкании
биогеохимического круговорота. Ещё большую роль на биогеохимический
круговорот оказывает человек. Но его роль осуществляется в противоположном
направлении. Человек нарушает сложившиеся круговороты веществ, и в этом
проявляется его геологическая сила, разрушительная по отношению к биосфере
на сегодняшний день.
Когда 2 млрд. лет тому назад на Земле появилась жизнь, атмосфера
состояла из вулканических газов. В ней было много углекислого газа и мало
кислорода (если вообще был), и первые организмы были анаэробными. Так как
продукция в среднем превосходила дыхание, за геологическое время в
атмосфере накапливался кислород и уменьшалось содержание углекислого газа.
Сейчас содержание углекислого газа в атмосфере увеличивается в результате
сжигания больших количеств горючих ископаемых и уменьшения поглотительной
способности «зелёного пояса». Последнее является результатом уменьшения
количества самих зелёных растений, а также связано с тем, что пыль и
загрязняющие частицы в атмосфере отражают поступающие в атмосферу лучи.
В результате антропогенной деятельности степень замкнутости
биогеохимических круговоротов уменьшается. Хотя она довольно высока (для
различных элементов и веществ она не одинакова), но тем не менее не
абсолютна, что и показывает пример возникновения кислородной атмосферы.
Иначе невозможна была бы эволюция (наивысшая степень замкнутости
биогеохимических круговоротов наблюдается в тропических экосистемах –
наиболее древних и консервативных).
Таким образом, следует говорить не об изменении человеком того, что не
должно меняться, а скорее о влиянии человека на скорость и направление
изменений и на расширение их границ, нарушающее правило меры преобразования
природы. Последнее формулируется следующим образом: в ходе эксплуатации
природных систем нельзя превышать некоторые пределы, позволяющие этим
системам сохранять свойства самоподдержания. Нарушение меры как в сторону
увеличения, так и в сторону уменьшения приводит к отрицательным
результатам. Например, избыток вносимых удобрений столь же вреден, сколь и
недостаток. Это чувство меры утеряно современным человеком, считающим, что
в биосфере ему всё позволено.
Надежды на преодоление экологических трудностей связывают, в
частности, с разработкой и введением в эксплуатацию замкнутых
технологических циклов. Создаваемые человеком циклы превращения материалов
считается желательным устраивать так, чтобы они были подобны естественным
циклам круговорота веществ. Тогда одновременно решались бы проблемы
обеспечения человечества невосполнимыми ресурсами и проблема охраны
природной среды от загрязнения, поскольку ныне только 1 – 2% веса природных
ресурсов утилизируется в конечном продукте.
Теоретически замкнутые циклы превращения вещества возможны. Однако
полная и окончательная перестройка индустрии по принципу круговорота
вещества в природе не реальна. Хотя бы временное нарушение замкнутости
технологического цикла практически неизбежно, например, при создании
синтетического материала с новыми, неизвестными природе свойствами. Такое
вещество вначале всесторонне апробируется на практике, и только потом могут
быть разработаны способы его разложения с целью внедрения составных частей
в природные круговороты.
2. Круговорот веществ в биосфере.
Процессы фотосинтеза органического вещества из неорганических
компонентов продолжается миллионы лет, и за такое время химические элементы
должны были перейти из одной формы в другую. Однако этого не происходит
благодаря их круговороту в биосфере. Ежегодно фотосинтезирующие организмы
усваивают около 350 млрд т углекислого газа, выделяют в атмосферу около 250
млрд т кислорода и расщепляют 140 млрд т воды, образуя более 230 млрд т
органического вещества (в пересчёте на сухой вес).
Громадные количества воды проходят через растения и водоросли в
процессе обеспечения транспортной функции и испарения. Это приводит к тому,
что вода поверхностного слоя океана фильтруется планктоном за 40 дней, а
вся остальная вода океана – приблизительно за год. Весь углекислый газ
атмосферы обновляется за несколько сотен лет, а кислород за несколько
тысяч лет. Ежегодно фотосинтезом в круговорот включается 6 млрд т азота,
210 млрд т фосфора и большое количество других элементов (калий, натрий,
кальций, магний, сера, железо и др.). существование этих круговоротов
придаёт экосистеме определённую устойчивость.
Различают два основных круговорота: большой (геологический) и малый
(биотический).
Большой круговорот, продолжающийся миллионы лет, заключается в том,
что горные породы подвергаются разрушению, а продукты выветривания (в том
числе растворимые в воде питательные вещества) сносятся потоками воды в
Мировой океан, где они образуют морские напластования и лишь частично
возвращаются на сушу с осадками. Геотектонические изменения, процессы
опускания материков и поднятия морского дна, перемещения морей и океанов в
течение длительного времени приводят к тому, что эти напластования
возвращаются на сушу и процесс начинается вновь.
Малый круговорот (часть большого) происходит на уровне экосистемы и
состоит в том, что питательные вещества, вода и углерод аккумулируются в
веществе растений, расходуются на построение тела и на жизненные процессы
как самих этих растений, так и других организмов (как правило животных),
которые поедают эти растения (консументы). Продукты распада органического
вещества под действием деструкторов и микроорганизмов (бактерии, грибы,
черви) вновь разлагаются до минеральных компонентов, доступных растениям и
вовлекаемых ими в потоки вещества.
Круговорот химических веществ из неорганической среды через
растительные и животные организмы обратно в неорганическую среду с
использованием солнечной энергии и энергии химических реакций называется
биогеохимическим циклом. В такие циклы вовлечены практически все химические
элементы и прежде всего те, которые участвуют в построении живой клетки.
Так, тело человека состоит из кислорода (62,8%), углерода (19,37%),
водорода (9,31%), азота (5,14%), кальция (1,38%), фосфора (0,64%) и ещё
примерно из 30 элементов.
3. Круговорот кислорода.
В количественном отношении главной составляющей живой материи является
кислород, круговорот которого осложнён его способностью вступать в
различные химические реакции, главным образом реакции окисления. В
результате возникает множество локальных циклов, происходящих между
атмосферой, гидросферой и литосферой.
Кислород, содержащийся в атмосфере и в поверхностных минералах
(осадочные кальциты, железные руды), имеет биогенное происхождение и должно
рассматриваться как продукт фотосинтеза. Этот процесс противоположен
процессу потребления кислорода при дыхании, который сопровождается
разрушением органических молекул, взаимодействием кислорода с водородом
(отщеплённым от субстрата) и образованием воды. В некотором отношении
круговорот кислорода напоминает обратный круговорот углекислого газа. В
основном он происходит между атмосферой и живыми организмами.
Потребление атмосферного кислорода и его возмещение растениями в
процессе фотосинтеза осуществляется довольно быстро. Расчёты показывают,
что для полного обновления всего атмосферного кислорода требуется около
двух тысяч лет. С другой стороны, для того, чтобы все молекулы воды
гидросферы были подвергнуты фотолизу и вновь синтезированы живыми
организмами, необходимо два миллиона лет. Большая часть кислорода,
вырабатываемого в течение геологических эпох, не оставалась в атмосфере, а
фиксировалась литосферой в виде карбонатов, сульфатов, оксидов железа, и её
масса составляет 5,9*1016 т. Масса кислорода, циркулирующего в биосфере в
виде газа или сульфатов, растворённых в океанических и континентальных
водах, в несколько раз меньше (0,4*1016 т).
Отметим, что, начиная с определённой концентрации, кислород очень
токсичен для клеток и тканей (даже у аэробных организмов). А живой
анаэробный организм не может выдержать (это было доказано ещё в прошлом
веке Л. Пастером) концентрацию кислорода, превышающую атмосферную на 1%.
4. Круговорот воды.
Вода, как и воздух, - основной компонент, необходимый для жизни. В
количественном отношении это самая распространённая неорганическая
составляющая живой материи. Семена растений, в которых содержание воды не
превышает 10%, относятся к формам замедленной жизни. Такое же явление
(ангидробиоз) наблюдается у некоторых видов животных, которые при
неблагоприятных внешних условиях могут терять большую часть воды в своих
тканях.
Вода в трёх агрегатных состояниях присутствует во всех составных
частях биосферы: атмосфере, гидросфере и литосфере. Если воду, находящуюся
в различных гидрогеологических формах, равномерно распределить по
соответствующим областям земного шара, то образуются слои следующей
толщины: для Мирового океана 2700 м, для ледников 100 м, для подземных вод
15 м, для поверхностных пресных вод 0,4 м, для атмосферной влаги 0,03 м.
Основную роль в циркуляции и биогеохимическом круговороте воды играет
атмосферная влага, несмотря на относительно малую толщину её слоя.
Атмосферная влага распределена по Земле неравномерно, что обуславливает
большие различия в количестве осадков в разных районах биосферы. Среднее
содержание водяного пара в атмосфере изменяется в зависимости от
географической широты. Например, на Северном полюсе оно равно 2,5 мм (в
столбе воздуха с поперечным сечением 1 см2), на экваторе - 45 мм.
О механизме гидрогеологического цикла было сказано выше – в разделе
касающемся описания особенностей гидросферы. Вода, выпавшая на сушу, затем
расходуется на просачивание (или инфильтрацию), испарение и сток.
Просачивание особенно важно для наземных экосистем, так как способствует
снабжению почвы водой. В процессе инфильтрации вода поступает в водоносные
горизонты и подземные реки. Испарение с поверхности почвы также играет
важную роль в водном режиме местности, но более значительное количество
воды выделяют сами растения своей листвой. Причём количество воды,
выделяемое растениями, тем больше, чем лучше они ею снабжаются. Растения,
производящие одну тонну растительной массы, поглощают как минимум 100 т
воды.
Главную роль в круговороте воды на континентах играет суммарное
испарение (деревья и почва).
Последняя составляющая круговорота воды на суше – сток. Поверхностный
сток и ресурсы подземных водоносных слоёв обеспечивают питание водных
потоков. Вместе с тем при уменьшении плотности растительного покрова сток
становится основной причиной эрозии почвы.
Как уже отмечалось, вода участвует и в биологическом цикле, являясь
источником кислорода и водорода. Однако фотолиз её при фотосинтезе не
играет существенной роли в процессе круговорота.
5. Антропогенные воздействия на окружающую среду.
Проблемы народонаселения и ресурсов биосферы тесно связаны с реакциями
окружающей природной среды на антропогенные воздействия. Естественное
экологически сбалансированное состояние окружающей среды обычно называют
нормальным. Это состояние, при котором отдельные группы организмов биосферы
взаимодействуют друг с другом и с абиотической средой без нарушения
равновесия круговоротов веществ и потоков энергии в пределах определённого
геологического периода, обусловлено нормальным протеканием природных
процессов во всех геосферах.
Природные процессы могут иметь катастрофический характер, например
извержения вулканов, землетрясения, наводнения, что, однако, также
составляет «норму» природы. Эти и другие природные процессы постепенно, с
геологической скоростью, эволюционируют и в то же время в течение
тысячелетий (на протяжении одного геологического периода) остаются в
квазистатическом сбалансированном состоянии. При этом квазистатически
протекают малый (биологический) и большой (геологический) круговороты
веществ и устанавливаются квазистатические энергетические балансы между
различными геосферами и космосом, что объединяет природу в единое целое.
Круговороты веществ и энергии в биосфере характеризуются определёнными
количественными параметрами, которые квазистатичны и специфичны для данного
геологического периода и для каждого элемента земной поверхности в
соответствии с их географией.
Обычно в качестве основных параметров, характеризующих состояние
окружающей природной среды, выделяют следующие:
1. Энергетический:
Е = Е0 + (Е,
где Е0 – запас энергии в системе в момент времени t0;
(Е – энергетический баланс системы за время (t, т.е. в период от
t = t0 до t = t0 + (t .
2. Водный:
W = W0 + (W,
где W0 – запас воды в системе в момент времени t0;
(W – водный баланс системы за время (t, т.е. в период от t = t0
до t = t0 + (t .
3. Биологический:
В = В0 + (Вв - (Вm,
где B0 – начальная биомасса;
(Вв – биологическая продуктивность;
(Вm – минерализация органики за время (t .
4. Биогеохимический:
G = G0 + (Gв - (Gg,
где G0 – запас химических элементов в системе;
(Gв и (Gg – изменение запаса химических элементов вследствие
биологического и геологического круговоротов веществ.
Эти параметры состояния окружающей среды могут быть количественно
определены экспериментальным путём для каждой точки, района, крупного
региона, природной зоны или ландшафтно-географического пояса, наконец, для
земного шара в целом; они количественно характеризуют состояние и
пространственную неоднородность среды.
Геохимический параметр состояния окружающей среды также существенно
изменился, особенно в отношении биологического и геологического
круговоротов. Под влиянием человеческой деятельности происходят большие
изменения в распределении химических элементов в биосфере, природная и
антропогенная трансформация веществ, а также переход химических элементов
из одних соединений в другие. Природный биологический круговорот веществ
нарушен человеком на площади, достигающей почти половины всей поверхности
суши: антропогенные пустыни, индустриальные и городские земли, пашни, сады,
вторичные низкопродуктивные леса, истощённые пастбища и т.д.
Нарушению геологического круговорота веществ способствовали такие
факторы:
1. Эрозия почвенного покрова и возрастания твёрдого стока в океан;
2. Перемещение огромных масс земной коры;
3. Извлечение из недр значительных количеств руд, горючих и других
ископаемых;
4. Перераспределение солей в почвах, грунтовых и речных водах под
влиянием орошаемого земледелия;
5. Применение минеральных удобрений и ядохимикатов;
6. Загрязнение среды сельскохозяйственными, промышленными и
коммунальными отходами;
7. Поступление в природную среду энергетических загрязнений.
Таким образом, исследование изменений параметров состояния окружающей
природной среды (хотя и на качественном уровне) позволяет сделать вывод об
отсутствии в настоящее время глобального экологического кризиса. В то же
время есть все основания считать теперешнее состояние биосферы нарушенным и
аномальным. Такое состояние может перейти в кризисное, если человечество не
проведёт специальные мероприятия по оздоровлению окружающей его среды.
Использованная литература.
1. М.Д. Гольдфейн, Н.В. Кожевников, А.В. Трубников, С.Я. Шулов – «Проблемы
жизни в окружающей среде. Учебное пособие». Химия. 1996г, №16.
2. А.А. Горелов. «Структура и функции экосистем». Экология. 1998г.
|