Рефераты

Дипломная работа: Высокомолекулярные флокулянты в процессах очистки природных и сточных вод

Дипломная работа: Высокомолекулярные флокулянты в процессах очистки природных и сточных вод

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

ГЛАВА 1. ВЫСОКОМОЛЕКУЛЯРНЫЕ ФЛОКУЛЯНТЫ В ПРОЦЕССАХ ОЧИСТКИ ПРИРОДНЫХ И СТОЧНЫХ ВОД

1.1 Очистка природной воды коагулянтами и флокулянтами

1.2 Обесцвечивание природной воды коагулянтами и флокулянтами

1.3 Очистка сточных вод коагулянтами и флокулянтами

1.4 Теоретические представления и экспериментальные данные о механизме флокуляции

1.4.1 Механизмы коагуляции

1.5 Условия применения флокулянтов для очистки воды

ГЛАВА 2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

2.1 Методы определения показателей качества питьевой воды

2.1.1 Определение цветности воды (качественный визуальный метод, по ГОСТ 1030)

2.1.2 Определение запаха воды

2.1.3 Органолептический метод определения вкуса

2.1.4 Фотометрический метод определения цветности

2.2 Определение параметров флокулирующей активности катионных полиэлектролитов

2.3 Определение бактерицидных свойств сополимеров акриламида с метакрилатом гуанидина

ГЛАВА 3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

3.1 Исследование флоккулирующих свойств новых сополимеров акриламида

3.2 Исследование бактерицидных свойств сополимеров акриламида с метакрилатом гуанидина по отношению к микробиологическим загрязнениям воды

3.3 Определение остаточного полимера в очищенной воде

ВЫВОДЫ

ЛИТЕРАТУРА


ВВЕДЕНИЕ

Актуальность. Охрана окружающей среды от загрязнений является актуальной проблемой современности. В этой связи проблема очистки природных и сточных вод приобретает особо важное значение, так как она тесно связана с охраной водных ресурсов.

Большинство способов очистки природных и производственных сточных вод, а также способов уплотнения и обезвоживания осадков различного типа основано на применении реагентов.

В последние 20 лет в качестве реагентов все большее распространение приобретают водорастворимые высокомолекулярные вещества – флокулянты. Их использование позволяет улучшить качество очистки, повысить производительность очистных сооружений, а некоторые технологические методы, например центрифугирование, вообще невозможно осуществить без применения флокулянтов.

Это в свою очередь стимулирует исследования в области синтеза новых синтетических высокомолекулярных флокулянтов. Особое место среди флокулянтов занимают производные полиакриламида. Перспективными химическими структурами для получения новых производных полиакриламида являются гуанидинсодержащие соединения. Присутствие в элементарном звене полимеров гуанидиновой группы должно придавать им высокую биоцидную активность, так как хорошо известно, что соединения, содержащие в своем составе гуанидиновую группу, обладают широким спектром бактерицидного действия и используются в качестве лечебных препаратов, в том числе антибиотиков.

В связи с этим разработка синтеза и исследование флоккулирующих свойств новых гуанидинсодержащих сополимеров акриламида является, несомненно, актуальной задачей.

Задачей данной работы являлось исследование условий осаждения суспензии каолина в присутствии новых сополимеров акриламида с метакрилатом гуанидина, особенностей формирования флоккул и осадков, а также эффективности использования полученных полиэлектролитов в процессах очистки и обеззараживания природных вод.


ГЛАВА 1. Высокомолекулярные флокулянты в процессах очистки природных и сточных вод

Очистка природных и сточных вод тесно связана с охраной окружающей среды и является актуальной проблемой современности. В последние десятилетия отмечено значительное повышение в водах открытых водоемов содержания тяжёлых металлов, нефтепродуктов, трудноокисляемых органических соединений, синтетических поверхностно-активных веществ, пестицидов и других загрязнений вследствие сброса промышленными и коммунальными предприятиями недостаточно очищенных сточных вод.

Несмотря на большое число разработок, отраженных в литературе [1 – 4], проблему очистки природных и сточных вод нельзя считать решенной. Это вызывает необходимость совершенствования технологии очистки воды, которая существенно зависит от интенсификации реагентной и, в частности, флокуляционной её обработки. Для этих целей используются водорастворимые высокомолекулярные соединения, среди которых наиболее распространенными и универсальными являются полиакриламидные флокулянты [5 – 10]. В результате их применения достигается эффективность удаления тяжёлых металлов на 95%, соединений фосфора более 90%, взвешенных веществ более 80%, органических веществ более 75% [7]. Кроме того, флокуляционная очистка воды характеризуется низкими капитальными и эксплуатационными затратами по сравнению с другими методами водоочистки [1]. Вопросам флокуляции модельных и реальных дисперсных систем с использованием полиакриламидных флокулянтов посвящены монографии [2 – 4, 6, 9] и обзоры [10 – 14]. С учетом этой информации и наиболее значимых данных последних лет в настоящем литературном обзоре приводятся основные закономерности очистки природных и сточных вод полиакриламидом (ПАА) и его анионными и катионными производными в отсутствие и в присутствии минеральных коагулянтов, а также рассмотрены наиболее эффективные способы интенсификации водоочистки.

1.1 Очистка природной воды коагулянтами и флокулянтами

Природная вода является сложной коллоидной системой, содержащей органические и неорганические вещества, а также тонкодиспергированные компоненты. Кроме того, качество природных вод может меняться в зависимости от времени года, химического и дисперсионного состава. Поэтому при производственных испытаниях необходимо учитывать качество исходной воды и индивидуальные особенности водоочистных станций. Влияние этих факторов на водоочистку охарактеризовано в монографиях [1, 3, 4, 15], а влияние коагулянтов – в монографиях [16, 4]. Одной из основных задач в технологии водообработки является выбор оптимальных видов реагентов для конкретного водоисточника, определение условий их применения и необходимых доз. Для очистки природной воды от взвешенных и коллоидно-дисперсных веществ на отечественных водопроводных станциях до последнего времени применялись в основном коагулянт – сульфат алюминия (СА) и флокулянт – ПАА. Отдельные сведения по реагентной обработке воды поверхностных источников с использованием коагулянтов и флокулянтов приведены в работах, опубликованных в последние годы [17 – 19].

Использованная технология очистки воды р. Дон на водопроводной станции г. Новочеркасска предусматривает применение бинарных реагентов – высокомолекулярного флокулянта Феннопола А-321 с коагулянтами - гидроксохлоридом алюминия (ГОХА) и СА (сульфатом алюминия) [20]. Влияние коагулянтов на мутность очищенной воды при отстаивании показано на рис. 1.1.


Рис. 1.1 - Зависимость мутности воды N (мг·л–1) от времени t (мин) при применении гидроксохлорида алюминия (1, 2, 3) и сульфата алюминия (1¢, 2¢, 3¢).

Как видно, в широком интервале концентраций ГОХА обеспечивает более полное осветление воды и его оптимальная доза меньше, чем СА. Добавки Феннопола (доза 0.15-0.2 мг·л–1) эффективно осветляли воду при температуре 200С и снижали дозу коагулянта до 2-4 мг·л–1. Аэрирование воды на стадии её смешения с реагентами ускоряло процесс десорбции углекислоты, образующейся вследствие гидролиза коагулянта, и увеличивало завершённость гидролиза. Удаление углекислого газа из сферы реакции гидролиза способствовало образованию плотных хлопьев, быстрому их осаждению и осветлению воды.

Сопоставление действия СА (К1) и ГОХА (К2) в отсутствие и присутствии ПАА при очистке воды р. Волги на водопроводной станции КУП “Водоканал” г. Казани показано в работе [21]. Результаты испытаний, проведенных в летний период 1999 г., показаны в табл. 1.1.

Табличные данные свидетельствуют об улучшении нормативных показателей очищенной воды при замене СА на ГОХА.


Таблица 1.1 - Влияние сульфата алюминия (К1) и гидроксохлорида алюминия (К2) в сочетании с ПАА на качество очищенной воды в различные дни испытаний [С(AI) = 4 мг·л-1, С(ПАА)=0.15 мг·л-1]. Флокулянт вводили после коагулянта через 2 мин

Цветность, град.

Мутность, мг·л-1

Концентрация, мг·л-1

Al Fe Mn
Исходная вода
62 2,5 0 0,9 0,16
(46)* (3,8) (0) (0,8) (0,14)
Требования СанПиН
20 1,5 0,5 0,3 0,2

Очищенная вода. Коагулянт К2

20 0,3 0,2 0,2 0,06
(20) (0,5) (0,1) (0,18) (-)
15 0,1 0,1 0,15 0,08
(23) (0,4) (0,1) (0,22) (0,05)
17 0,2 0,2 0,2 0,07
20 0,3 0,2 0,2 0,05

Коагулянт К1

22 0,9 0,2 - -
(18) (0,2) (0,1) (0,15) (0,05)
21 0,7 0,4 - -
(20) (0,2) (0,2) (0,3) (0,04)
21 1,1 0,3 -- -
21 0,8 0,1 - -
22 0,7 0,2 - -
20 0,7 0,2 0,25 0,04

Дополнительное введение после коагулянтов ПАА не эффективно сказывалось на водоочистке, поскольку исходная вода в июле 1999 г. не характеризовалась большой загрязнённостью.

На Рублевской водопроводной станции «Мосводоканала» (москворецкий источник) испытана пилотная установка компании «Дегремон» для очистки воды с применением бинарных реагентов - коагулянтов СА и оксихлорида алюминия (ОХА) с анионным флокулянтом ASP25 [сополимер акриламида (АА) с акрилатом натрия (Na-АК) с содержанием ионогенных звеньев α = 5 мол.%] [18]. Испытания проводились в 1997-1998 гг. в течение всех сезонных изменений качества исходной воды. СА оказался более эффективным в период теплой исходной воды, а в зимний период более эффективным являлся ОХА.

Совместное использование коагулянтов и флокулянта эффективно снижало основные характеристики загрязненности воды после отстаивания: мутность - на 80-85%, цветность – на 50-60%, перманганатная окисляемость – на 40-50%, содержание железа на 90%, аммония – до 0,1 мг·л–1 и содержание фитопланктона - на 97-98% (даже в период бурного цветения воды).

Влияние интервала между моментом введения СА и анионного флокулянта Магнафлок LT27 на очистку воды рассмотрено в работе [22]. При малой дозе флокулянта (0,02 мг·л–1) и дозе коагулянта 5 мг·л–1интервал времени 30-120 с между дозировкой реагентов не влиял на цветность воды, а при большой дозе флокулянта (0,30 мг·л–1) и той же дозе коагулянта с увеличением интервала времени между дозировками реагентов цветность воды снижалась. Увеличение интервала до момента ввода флокулянта способствовало более полной сорбции гумусовых веществ частицами гидроксида алюминия и последующей сорбции флокулянта (см. табл. 1.2).

В настоящее время в г. Перми компанией ЗАО «Москва-Штокхаузен-Пермь» по немецкой технологии налажено производство высокоэффективных флокулянтов Праестолов, которые имеют высокую молекулярную массу (ММ), 100%-ное содержание основного вещества, а также широкий спектр марок неионного, анионного и катионного полимеров, адаптированных к различным видам суспензий и процессам их разделения. Рассмотрим результаты применения Праестолов в отсутствие и в сочетании с коагулянтами для обесцвечивания и очистки природной воды.


Таблица 1.2 - Влияние интервала между моментами введения сульфата алюминия и Магнафлока LT27 на качество очистки воды (доза коагулянта 5,0 мг·л-1, температура воды 4°С)

Доза флокулянта, мг·л-1

Интервал времени, с Очищенная вода
Цветность, град.

Мутность, мг·л-1

0 0 23,5 1,3
0,02 30 18,0 0,4
0,02 60 18,0 0,4
0,02 120 18,0 0,4
0,30 30 21,0 0,4
0,30 60 20,0 0,4
0,30 120 19,0 0,4

На основании модельных исследований на суспензии каолина [23, 24] проведено сопоставление качества очистки природной воды различными флокулянтами в сочетании с СА [25]. В качестве флокулянтов применяли аммиачный ПАА производства Завода им. Я.М. Свердлова г. Дзержинск, неионный Праестол 2500 (ПАА), анионные Праестолы 2515 TR, 2530 TR и 2540 TR (сополимеры АА с Na-АК) производства компании ЗАО «Москва-Штокхаузен-Пермь». Характеристики флокулянтов приведены в табл. 1.3.

Образцы частично гидролизованного ПАА (ГПАА) − В (Г), Е и гидролизованного Праестола (И) получали в производственных условиях на установке для растворения полимера щелочным гидролизом образцов Б, А и З соответственно.

Таблица 1.3 - Характеристика флокулянтов

Образец Полимер

[h], см3·г-1

Мh×10-6

Содержание в сополимере звеньев, мол. %
акриламида акрилата натрия
А ПАА 900 4,2 100 0
Б ПАА 580 2,3 100 0
В ГПАА 580 1,3 89 11
Г ГПАА 580 1,2 82 18
Е ГПАА 900 2,2 82 18
Ж Праестол 2500 1550 8,7 97 3
З Праестол 2515 TR 1500 4,4 89 11
И Праестол 2515 TR 1500 4,0 83 17
К Праестол 2530 TR 1800 4,6 80 20
Л Праестол 2540 TR 1600 4,4 72 28

Щелочной гидролиз использовался для частичного замещения амидных групп ПАА на карбоксилатные и проводился в условиях, установленных на основании ранее выполненных исследований [26-31].

С учетом результатов лабораторных исследований на модельной суспензии каолина [32] были проведены опытно-промышленные испытания бинарных реагентов – ПАА (образец Б), ГПАА (образцы В и Г) и анионного Праестола 2515 (образец З) в сочетании с СА по очистке воды р. Волги на водопроводной станции КУП «Водоканал» г. Казани в осенне-зимний периоды 1998 г. [25, 27]. Согласно приведенным в табл. 1.4 данным, применение Праестола 2515 в осенний период года (температура воды 13°С, цветность 50-52 град, мутность 4,2-5,1 мг·л–1, общая щелочность 1,84-2,00 мг-экв·л–1) обеспечивало очистку воды до требуемых норм [33].

Таблица 1.4 - Влияние ПАА (образец Б), ГПАА (образцы В и Г) и Праестола 2515 (образец З) в сочетании с сульфатом алюминия на качество очищенной воды

Дата

Флокулянт

СК, мг·л-1

СП, мг·л-1

Мутность, мг·л-1

Al, мг·л-1 после очистки

до очистки после очистки
01.10 Праестол (З) 13 0,014 4,4 0,7 0,3
02.10 - // - // - 13 0,012 4,9 0,9 0,2
03.10 - // - // - 17 0,014 5,1 0,8 0,3
04.10 - // - // - 17 0,014 4,2 1,0 0,2
02.12 ПАА (Б) 35 0,15 2,1 1,7 0,8
21.12 - // - // - 34 0,15 2,2 1,2 0,8
28.12 - // - // - 34 0,15 1,9 1,2 0,4
03.12 ГПАА (Г) 35 0,15 3,5 0,8 0,5
20.12 - // - // - 34 0,15 2,2 1,4 0,5
21.12 ГПАА (В) 34 0,15 2,2 1,2 0,4
27.12 - // - // - 35 0,15 2,2 1,0 0,4
22.12 Праестол (З) 34 0,014 2,2 1,2 0,5
23.12 - // - // - 34 0,019 2,8 1,4 0,5
25.12 - // - // - 34 0,022 2,0 0,7 0,4

Сопоставление качества очистки воды р. Волги, обработанной неионным Праестолом 2500 (ПР) и его частично гидролизованным производным (ГПР) проведено на водопроводной станции ОАО «Казаньоргсинтез» в летний период 2000 г [34]. Технологическая схема водоочистки состояла из двух линий с одинаковым составом очистных сооружений (камеры хлопьеобразования, горизонтальные отстойники и кварцевые фильтры) с производительностью 1700 м3·час–1. В одну из линий подавали ПР, а в другую – ГПР и определяли в каждой линии основные показатели очищенной воды (табл. 1.5).

Таблица 1.5 - Влияние флокулянтов ПР и ГПР (содержание звеньев Na-АК 19 мол. %) в сочетании с сульфатом алюминия на качество очищенной воды

Дата

СК, мг·л-1

СП, мг·л-1

Очищенная вода

Мутность, мг·л-1

Al (III), мг·л-1

ПР ГПР ПР ГПР
1.06 13 0,015 1,10 0,97 0,33 0,28
2.06 13 0,017 1,16 1,09 0,32 0,27
3.06 14 0,013 1,12 1,02 0,30 0,24
5.06 13 0,010 1,34 1,26 0,38 0,29
10.06 16 0,017 1,16 1,15 0,24 0,17
11.06 14 0,013 1,20 1,11 0,19 0,16
12.06 16 0,016 1,01 0,90 0,21 0,15
13.06 16 0,013 1,31 0,61 0,18 0,16

Как видно, очистка воды с применением ПР и ГПР обеспечивает качество питьевой воды согласно требований нормативов [33]. Остальные показатели очищенной воды также отвечали нормам. При этом качественная водоочистка обеспечивалось малыми дозами Праестола 2500. Табличные данные подтверждают, что при замене ПР на ГПР мутность воды снижалась на 18%, а содержание в ней Al+3 – на 26%. При этом достигнуто улучшение качества водоочистки и снижение эксплуатационных затрат.

Применение для водообработки на многих водопроводных станциях СА выявило ряд недостатков, таких как малая эффективность при низкой температуре воды, большие дозировки реагента и опасность превышения в питьевой воде ПДК по алюминию и железу [4].

Поэтому заслуживает внимания поиск для водоочистки новых эффективных реагентов. Поскольку коллоидные примеси в природных и сточных водах, а также частицы большинства суспензий заряжены отрицательно, то для их очистки целесообразно применение катионных флокулянтов.

Флокулирующие свойства анионного (А) и катионного флокулянтов (К) изучены при очистке воды (концентрация дисперсной фазы 2,7%), отобранной из отстойников водопроводной станции [35]. Флокулянтом А являлся сополимер АА с Na-АК, а флокулянтом К сополимер АА с гидрохлоридом диметиламиноэтилметакрилата (ГХ ДМАЭМА). Количественной характеристикой флокулирующего эффекта служил параметр

D = (V – V0) / V0 ,

где V и V0 – соответственно скорости осаждения дисперсной фазы в воде (определяли при седиментации в цилиндрах) в присутствии и в отсутствие флокулянта.

Установлено увеличение значений D с повышением концентрации флокулянтов А и К (СП). При близких значениях ММ и содержания ионогенных звеньев в макромолекулах значения D возрастали при замене флокулянта К на А. Это следствие более эффективной адсорбции отрицательно заряженных макромолекул флокулянта А на частицах дисперсной фазы по сравнению с положительно заряженными макромолекулами флокулянта К. Увеличение концентрации дисперсной фазы в воде (СД) понижало величину D по причине уменьшения отношения СП/ СД при СП = const.

При добавлении в воду поверхностно-активного вещества (ОП-10) значения D увеличиваются более существенно для флокулянта К, чем для флокулянта А. Очевидно, молекулы ОП-10, адсорбируясь на дисперсных частицах, способствуют локальной адсорбции макромолекул флокулянта К. Для флокулянта А отмечено уменьшение (в присутствии ОП-10) среднеквадратичных размеров макромолекулярных клубков в растворе (r2)1/2, которое уменьшало величину D.

На водоочистной станции г. Кемерово [36] проанализированы причины повышения содержания остаточного алюминия в питьевой воде, и для снижения этого показателя предложена замена реагентов – СА на гидроксосульфат алюминия (ГСА) и аммиачного ПАА на низкомолекулярный катионный флокулянт ВПК-402 (полидиметилдиаллиламмонийхлорид), выпускаемый ПО «Каустик» г. Стерлитамак. Опыты проводили на пилотной установке фирмы Preussag Noell при температуре воды 200 С. Были проанализированы два фильтроцикла при тех же дозах реагентов, что и на очистных сооружениях. На рис. 1.2 приведена зависимость мутности воды и концентрации остаточного алюминия в фильтрованной воде от времени для фильтроциклов по очистке р. Томи при использовании ГСА (2 мг·л–1 Al2O3) с ВПК-402 (0,2 мг·л–1), а также СА с ПАА в тех же дозах.


Рис. 1.2 - Зависимость мутности воды N (мг·л–1) (1-3) и концентрация остаточного алюминия в фильтрованной воде с Al (мг·л–1) (4) от времени t (ч) для фильтроциклов по очистке р. Томи на пилотной установке фирмы Preussag Noell, а - для гидроксосульфата алюминия (2 мг·л–1 Al2O3) и ВПК-402 (0.2 мг·л–1); б - для сульфата алюминия (2 мг·л-1 Al2O3) и ПАА (0,2 мг·л–1). Вода: 1 - исходная, 2 – осветлённая, 3 – фильтрованная

Фильтроцикл на пилотной установке с применением СА и ПАА хорошо моделировал работу очистных сооружений. Мутность воды после отстойника не отличалась от исходной, а после фильтров – сохранялась на уровне 2 мг·л–1, что свидетельствует о неэффективной работе установки. При применении ГСА и ВПК-402 обеспечивалась лучшая работа отстойника и качество фильтрованной воды соответствовало требованиям нормативов по мутности. Содержание остаточного алюминия не превышало 0,1 мг·л–1, тогда как при использовании СА с аммиачным ПАА его величина равнялась 0,2 мг·л–1.

В работе [37] приведены результаты очистки воды р. Дон на водопроводной станции г. Ростова-на-Дону с использованием катионного флокулянта ВПК-402, который применяли как единственный реагент с марта 1994 г. При введении флокулянта в камеры хлопьеобразования осветление воды в отстойниках было слабым, а мутность очищенной воды намного превышала нормы качества питьевой воды. Поэтому флокулянт стали вводить во всасывающие линии насосов на промежуточной насосной станции подкачки, расположенной в 3 км от очистных сооружений. При этом взаимодействие флокулянта с коллоидными загрязнениями в воде проходило уже в трубах и повышало мутность очищаемой воды по сравнению с речной водой, что способствовало последующему эффективному осветлению воды в отстойниках. В табл. 1.6 приведены результаты осветления воды коагулянтом (1993 г) и флокулянтом (1995 г), а в табл. 1.7 сведены показатели качества водоочистки.

Согласно данным табл. 1.6 и 1.7, флокулянт ВПК-402 по сравнению с коагулянтом СА обеспечивал более глубокий и устойчивый в течение всего года эффект осветления воды в отстойниках и фильтрах. Дозирование флокулянта ВПК-402 в воду без разбавления позволило упростить и удешевить конструкцию реагентного хозяйства и его эксплуатацию.

Таблица 1.6 - Влияние флокулянта ВПК-402 и сульфата алюминия на качество очистки воды на водопроводной станции г. Ростова-на-Дону

В среднем за год

Доза реагентов, мг·л–1

Мутность воды, мг·л–1

ВПК-402 сульфат алюминия исходной в смесителе после отстойника очищенной
1993 - 19,9 12,5 12,2 5,3 1,1
1995 0,23 - 13,3 7,7 3,7 0,96

По данным табл. 1.7 замена коагулянта СА на флокулянт ВПК-402 снизила содержание в очищенной воде остаточного алюминия, а остальные показатели очищенной воды изменялись одинаково. По сравнению с СА при использовании флокулянта ВПК-402 требуемый эффект очистки воды обеспечивался меньшими на порядок дозами.

Испытания катионного флокулянта ВПК-402 на водозаборе г. Новосибирска, проведенные в осенний паводок, показали его высокую эффективность при низкой температуре воды [38].

Влияние флокулянтов – анионного Магнафлока LT27 и катионного Магнифлока LT 573C совместно коагулянтом СА на цветность и мутность очистки воды р. Днепр в условиях Днепровской водопроводной станции г. Киева рассмотрено в работах [22]. Опыты проведены по методике пробного контактного коагулирования-флокулирования [39]. При дозе СА 5 мг·л–1 повышение степени осветления и обесцвечивания воды обеспечивалось лишь небольшими дозами (0,01 – 0,05 мг·л–1) Магнафлока LT27, а превышение этих доз увеличивало цветность очищенной воды (см. табл. 1.8). Магнифлок LT 573С в малых дозах повышал цветность воды и только при больших дозах – 0,5 – 1,25 мг·л–1 (при дозе коагулянта 2,5 – 5,0 мг·л–1) снижал мутность и цветность очищенной воды (см. табл. 1.9). Предварительное озонирование и хлорирование воды не повышало эффективность водоочистки.

Таблица 1.7 - Влияние флокулянта ВПК-402 и сульфата алюминия на качество очистки воды на водопроводной станции г. Ростова-на-Дону

Показатели Среднегодовые данные
1993 г. (сульфат алюминия) 1995 г. (ВПК-402)
р. Дон Вода очищенная р. Дон Вода очищенная
Цветность, град 17 7 18 8
рН 8,2 7,8 8,1 7,8

Сухой остаток, мг·л–1

928 924 781 780

Жесткость общая, мг·л–1

7,75 7,75 6,57 6,57

Щелочность, мг·л–1

3,6 3,4 3,4 3,3

Хлориды, мг·л–1

154 156 115 117

Сульфаты, мг·л–1

280 278 230 229

Аммиак, мг·л–1

0,37 0,13 0,43 0,15

Нитриты, мг·л–1

0,058 0,003 0,0057 0,005

Нитраты, мг·л–1

3,88 3,03 3,59 2,75

Железо, мг·л–1

0,40 0,17 0,58 0,23

Алюминий, мг·л–1

0,07 0,18 0,07 0,08

Цинк, мг·л–1

0,012 0,009 0,009 0,001

Медь, мг·л–1

0,021 0,016 0,020 0,016

Марганец, мг·л–1

0,054 0,028 0,110 0,084

Нефтепродукты, мг·л–1

0,15 0,05 0,100 0,05

Таблица 1.8 - Влияние флокулянта Магнафлока LT27 и сульфата алюминия на качество очистки воды при 3°С

Дозы реагентов, мг·л–1

Очищенная вода

Al2(SO4)3

Магнафлок LT Цветность, град

Мутность, мг·л–1

0 0 23,0 0,5
0,02 0 21,0 0,5
0,02 0,01 18,0 0,3
0,02 0,02 18,0 0
0,02 0,05 18,0 0
0,02 0,07 21,0 0
0,02 0,10 21,0 0
0,02 0,30 22,0 0

Таблица 1.9 - Влияние флокулянта Магнафлока LT27 и сульфата алюминия на качество очистки воды при 4°С

Страницы: 1, 2, 3


© 2010 Собрание рефератов