Рефераты

Курсовая работа: Производство и переработка масличного сырья

Изменение физико-механических характеристик обусловлено изменением структуры наполненных полимеров. Меняется характер разрушения ПКМ на основе ПЭ. Ненаполненный ПЭ при приложении растягивающих нагрузок деформируется с образованием «шейки», то есть, способен к образованию и развитию вынужденно-эластической деформации.

Полиэтилен, наполненный как исходными, так и измельченными отходами, при растягивающих нагрузках теряет способность к возникновению и развитию вынужденно-эластической деформации, уменьшается относительное удлинение.

Образцы, содержащие лузгу меньших размеров обладают лучшей способностью к деформации, что связано с более равномерным распределением наполнителя.

Таким образом, в результате исследований была показана возможность применения отходов обмолота проса в качестве наполнителя ПЭ. Отмечено, что введение данных отходов позволяет перерабатывать композицию методом экструзии при сохранении физико-механических свойств и термостойкости ПЭ со снижением его стоимости. Возможно также получение биодеградируемых композитов.


3. Терморасширенный графит, свойства, области применения

Однокомпонентные системы из углерода представлены многообразием структурных форм: алмаз; графит; угли, карбин, углеродные волокна, сажи; недавно открытые фуллерены и нанотрубки. Относительно новый материал - терморасширенный графит (ТРГ) также состоит из чистого углерода, но имеет пеноподобную структуру. Насыпная плотность образцов ТРГ колеблется в широких пределах (1¸10г/дм3) и определяется условиями его получения [15-17]. Пикнометрическая плотнось ТРГ по воде составляет 0,4-0,9г/см3 [18], удельная поверхность равна 15¸100 м2/г углерода. Как и графит, ТРГ химически инертен, электропроводность и теплопроводность определяются поровой структурой материала, и могут варьироваться в широких пределах.

Общий принцип, заложенный в основу различных методов получения ТРГ, заключается во внедрении в межслоевые пространства графита веществ или соединений, которые при быстром нагреве либо сами переходят в газообразное состояние, либо продукты их распада являются газами [19,20]. Прямому термоудару может подвергаться интеркалированный графит (ИГ) с солями, например, C6FeCl3 [21]. При образовании токсичных продуктов или для получения ТРГ повышенной чистоты, ИГ предварительно до термообработки (ТО) гидролизуется. Так в ИГ с кислотами в результате гидролиза происходит полная замена интеркалата (внедренного слоя) на гидроксил-ионы и воду [22]:

C+24HSO-4 × 2H2SO + 3H2O ® C+24OH- × 2H2O + 3H2SO4         (1)

Механизм преобразования ИГ в пенографит еще недостаточно понятен. Авторы [23] предполагают, что после быстрого удаления некоторого количества внедрен­ных частиц из межслоевого пространства графитовой матрицы, углеродные сетки обрушиваются, разрушая соседние плоскости. Размер зерен исходного графита должен быть >75 мкм с размерами кристаллов не менее 75 нм. Подобные данные приводятся и в работе [24].

Процесс терморасширения графита представляется как фазовый переход, вызванный выходом интеркалирующего агента из ИГ. Степень вспенивания зависит от условий синтеза и состава полученного ИГ, а также от структуры и размеров частиц исходного углеродного сырья.

Согласно [25], первоначально при расширении происходит расщепление кристаллитов вдоль оси "С" на тонкие пачки-ленты из небольшого числа атомных плоскостей с одновременной их деформацией, в результате чего образуется объемная складчатая структура. Движущей силой данного процесса является стремление частиц к минимизации поверхности при данном объеме. Возникающие при этом червеобразные и цилиндрические формы частиц представляют собой закрытую поверхность, внутри которой, по-видимому, содержатся остаточные продукты разложения (рис.1). Авторы [25] морфологию пенографита образно представляют в виде произвольно скрученных тонких листов бумаги. Они также констатируют, что при термообработке происходит уменьшение размеров кристаллитов по оси "С" и снижение степени кристаллического порядка. В работе [26] отмечается, что размеры кристаллитов по оси "С" практически не изменяются.

Червеобразная форма частиц пенографита объясняется разворотом плоских углеродных сеток, расклиниваемых по торцевой поверхности кристаллита поверхностными группами. Влияние структуры исходного графита на процесс последующего терморасширения обсуждается в работах [24,27], в которых показано, что наличие дефектов и снижение степени упорядоченности вдоль оси "С" уменьшают степень вспенивания.

В настоящее время подавляющую долю (до 50 тыс.т/год) ТРГ перерабатывают в гибкую графитовую фольгу и прессованные изделия. Фольгу получают прокаткой на системе вальцов в одном цикле с ТО без введения связующего. Сцепление между частицами ТРГ и гибкость фольги обеспечивает разветвленная пенообразная структура. В результате получают рулонные материалы толщиной 0,15¸1,5мм, плотностью 0,7¸1,2г/см3, прочностью на растяжение 4¸7МПа и удельным электросопротивлением 0,3¸0,7×10-4Ом×м [28]. Спектр применения фольги и прессованных изделий из ТРГ чрезвычайно широк. Благодаря высокой инертности к агрессивным средам, термостабильности в сочетании с упругостью и пластичностью углеродные материалы на основе ТРГ повсеместно вытесняют такие традиционные уплотнительные и прокладочные материалы как асбест, поронит, фторопласт, медь, свинец. Особенно эффективно их применение в химическом, нефтегазовом машиностроении [29], в топливно-энергетическом комплексе [30,31], коммунальном хозяйстве. Они обеспечивают снижение аварийности, затрат на ремонт оборудования, экологическую безопасность.

Особое применение, находят композиты, в состав которых входит интеркалированный графит. Процесс его терморасширения под воздействием открытого пламени или нагрева приводит к образованию негорючего термоизоляционного покрытия с одновременным выделением СО и СО2, что замедляет и подавляет процесс горения. Подобные композиты в виде рулонных материалов, паст, красок получили название активных огнезащитных материалов [32,33]. Выпускаемые в настоящее время отечественные материалы (НПО ²УНИХИМТЕК²) используются для защиты электрических кабелей, создания противопожарных дверей и перегородок, огнезащиты строительных конструкций.

Весьма многообразные области применения ТРГ и материалов на его основе, уникальное сочетание свойств изделий, возрастающий спрос потребителей стимулируют развитие технологии производства и переработки интеркалированного графита. Сейчас интеркалированный графит промышленно получают преимущественно по химической технологии, окисляя углеродное сырье в концентрированных серной или азотной кислотах. Для этого в H2SO4 вводят дополнительно окислитель (K2Cr2O7, HNO3, KMnO7, H2O2 и др.), в азотной кислоте на процесс окисления графитовой матрицы тратится часть HNO3. В общем виде образование бисульфата (БГ) и нитрата графита (НГ) осуществляется по реакциям [22]:

24nC + Oxz + 3H2SO4 ® C+24n × HSO4- × 2H2SO4 + HOx(z-1)                 (2)

24nC + 5HNO3 ® C+24nNO3- × 3HNO3 + H2O + NO2                           (3)

где n-ступень внедрения интеркалированного соединения; n=1; 2; 3; … и соответствует количеству углеродных слоев между слоями интеркалата. Для получения БГ и НГ I ступени (максимальное заполнение) потенциал окислительной среды (кислота + окислитель) должен быть не менее 1,6В относительно нормального водородного электрода (нвэ), что возможно реализовать лишь в высококонцентрированных кислотах. Как следует из реакций (2, 3) процесс интеркалирования заключается в заряжении графитовой матрицы (C+24n) за счет поглощения электронов с углеродных сеток окислителем и электростатическим втягиванием анионов кислоты в межслоевые пространства для нейтрализации положительного заряда. За счет водородных связей с анионом совнедряется 2-3 молекулы кислоты.

Химический способ достаточно прост в технологическом плане и приборном оформлении [34].

Высококачественные вспучивающиеся соединения интеркалирования графита.

Одним из наиболее интересных свойств соединений интеркалирования графита (СИГ) является их способность в десятки и сотни раз увеличивать свой объем при нагревании (вспучивается) с образованием терморасщепленного или вспученного графита (ТРГ)

Традиционно это свойство использовалось для получения ТРГ и изделий из него. Однако существующая другая обширная область практического использования СИГ – производство вспучивающихся огнезащитных покрытий, красок, уплотнений, огнетушащих составов, огнезащищенных полимерных композиций, изолирующих составов и смесей [16]. При этом от СИГ требуется в течение длительного времени сохранять способность к вспучиванию, в том числе в состав композиционных материалов, и вспучиваться при термическом воздействии. В отличии от СИГ для производства терморасщепленного графита, к которым представляется единственное требование – обеспечить низкую плотность графитовой пены, использование в противопожарной обороне требует наличия у СИГ набора специфических свойств. Наиболее значимыми для них являются: высокая стабильность, в том числе в составе композиций и материалов; низкая температура начала вспучивания; высокий коэффициент вспучивания при относительно низкой температуре (500°С).

Соединения интеркалирования графита с таким набором свойств, названные нами высококачественными вспучивающимися графитами (ВКВГ), обеспечивают высокую огнетушащую и огнезащитную эффективность средств противопожарной обороны, особенно при относительно низкой температуре.

Уникальное сочетание эксплуатационных свойств терморасширенного графита (ТРГ), таких как широкий диапазон рабочих температур, высокая химическая стойкость, прекрасная уплотняющая способность, способствуют устойчивому росту потребления уплотнений на его основе многими отраслями промышленности.

Как известно, терморасширенный графит для изготовления графитовых уплотнений получают из природного графита через стадию синтеза интеркалированного графита (ИГ).

В процессе получения ТРГ не только сохраняет все ценные свойства графита, но и приобретает новые: такие, как чрезвычайно низкая насыпная плотность, более развитая поверхность, способность к формованию (прокатке, прессованию) без добавления связующего [15-17]. Неармированные материалы и уплотнения из ТРГ устойчивы на воздухе до 500-550 °С [18,19], в среде водяного пара – до 650 °С, в инертной атмосфере до 3000 °С; выдерживают термоудары, а также низкие температуры вплоть до -240 °С [20]. Эти материалы химически устойчивы, высокотеплопроводны, электропроводны [18].


Заключение

 На основании информационного анализа, можно сделать вывод о том, что полимеры, в том числе и полиэтилен обладают уникальным комплексом свойств, не имеющих аналогов среди традиционных конструкционных материалов. В связи с этим, неуклонно растут темпы производства полимерных материалов и расширяются области их применения. Применение полимерных материалов имеет и негативную сторону, связанную с горючестью большинства полимеров. Поэтому во многих странах приняты стандарты, определяющие допустимый уровень горючести полимерных материалов, в таких отраслях как: транспортное машиностроение, электротехника, производство изделий бытового назначения, строительство. С помощью целенаправленного регулирования свойств полимеров, возможно получать материалы с заранее заданными свойствами, в том числе и пониженной горючестью. Работы по этому направлению ведутся давно, но в недостаточном количестве, т.к. это связано со сложностью поставленной задачи и необходимостью учитывать на только эффективность замедлителей горения, но и влияние используемых веществ на технологические, эксплуатационные свойства материалов, доступность замедлителей горения, экономические аспекты их производства и применения. Комплексное решение этих проблем в настоящее время на достигнуто, разработанные системы сложны и содержат добавки, оказывающие негативное влияние на физико-механические, теплофизические свойства и на окружающую среду.

Актуальность этой проблемы обусловлена наличием большого количества отходов химической и сельскохозяйственной промышленности, утилизация которых в настоящее время не проводится и использование которых в качестве наполнителей решает одновременно технологические и экологические проблемы.

Поэтому исследования в этой области являются актуальной задачей.

2. Исследовательская часть

2.1.1. Цель и задачи работы, объекты исследования

Целью работы является химическая модификация отходов сельскохозяйственного производства для создания на их основе материалов различного функционального назначения.

Объектами исследования являются:

1.   Отходы обмолота проса (ООП).

ООП являются отходами, образующимися в процессе обмолота сельскохозяйственных культур (просяной крупы) и представляют собой разрушенную внешнюю оболочку, защищающую зерно.

Частички ООП имеют лепесткообразную форму со средними размерами: длина 3-4 мм, толщина 0,1 мм.

По химическому составу они представляют собой в основном крахмал, клетчатку и пентазан -70-80% [36,37], включают 13-14% воды и незначительное количество минеральных веществ.

Насыпная плотность измельченного ООП 174 кг/м3.

ООП не растворяются в воде, в кислотах обугливается, в минеральных кислотах – не растворяется, отмечено незначительное изменение массы в ледяной уксусной и концентрированной муравьиной кислотах.

2. Серная кислота (H2SO4) ГОСТ 127.1-93-127.5-93

3. Азотная кислота (HNO3) ГОСТ 701-89

2.2. Методы и методики исследования

Методики испытаний по ГОСТ

Физические, физико-химические и физико-механические свойства определяли в соответствии со стандартными методиками:

-насыпная плотность (r) ГОСТ 15139-71

-водопоглощение

-ситовай анализ

ГОСТ 4650-80

ГОСТ 5954.2-91

Метод инфракрасной спектроскопии (ИКС) [35-37]

Для изучения взаимодействия компонентов композиций применяли метод инфракрасной спектроскопии (ИКС), выполняемый на приборе “Spekord” с приставкой “MJR-4” с призмой KRS-5 c 18 отражениями. Образцы готовили в виде таблеток, полученных прессованием при давлении 2 МПа.

Метод термогравиметрического анализа [38]

Изменения массы, скорости изменения массы и величины тепловых эффектов при воздействии на полимеры повышенных температур изучали методом термогравиметрического анализа с использованием дериватографа “Q-1500D” системы Паулик - Паулик – Эрдей [5].

Образцы массой 0,2 г нагревали в среде воздуха до 1000°С с постоянной скоростью нагрева - 10°/мин. Чувствительность по каналам ДТГ - 1mv; ТГ - 500 mv; ДТА - 500 mv. Точность измерения - 0, 1%.

Метод оптической микроскопии [39,40]

Микроскопические испытания проведены на микроскопе “ МБС-5” в прямом свете, с увеличением от 50 до 500 крат.

Метод определение насыпной плотности [41]

Насыпная плотность выражается массой единицы объема (кг/м3) свободно насыпанного материала.

Согласно ГОСТ 11035—64 испытуемый порошкообразный материал засыпают из конической ворон­ки, укрепленной на штативе над измерительным цилиндром на расстоянии 20—30 мм. Объем измерительного цилиндра 100 см3, внутренний диаметр 45 мм. Цилиндр и воронку изготавливают из стекла или металла. Диаметр нижнего отверстия воронки 35 мм.

Ход определения. Закрыв нижнее отверстие воронки, засыпают в нее порцию испытуемого материала, после чего ука­занное отверстие вновь открывают и дают материалу высыпать­ся в предварительно взвешенный измерительный цилиндр. По­стукивание и встряхивание цилиндра не допускается. и напол­ненный сосуд взвешивают с точностью до 0,1 г.

Насыпную плотность в кг/м3 рассчитывают по формуле:

где m1 – масса измерительного цилиндра; m2 – суммарная масса пробы и измерительного цилиндра.

Материальные расчеты

Таблица 1.

Для стадии термообработки
приход кг расход кг
1. ООП 700

 1.ООП

 2.испарившаяся влага, СО2, СО

320

380

Для стадии окисления

 2. ООП

 3. H2SO4

320

1090

3. наполнитель 1410
Для стадии промывки

1. наполнитель

2. вода

1410

13700

1. наполнитель

2. промывная вода(содержащая H2SO4)

3. потери наполнителя

4. потери промывной воды

337

14504

3

296

Для стадии сушки
1. наполнитель 337

1. наполнитель

2. влага

260

77

2.3.Результаты эксперимента

Отходы промышленного и сельскохозяйственного производства представляют одну из серьезных экологических проблем в РФ. Вопросы утилизации отходов обмолота зерновых культур таких как, например, гречиха, просо, подсолнечник зачастую не решаются вообще, либо отходы годами гниют на полях, либо их сжигают и возникает серьезная опасность пожаров.

Ежегодно на территории РФ в результате сельскохозяйственной переработки накапливается много отходов, причем только отходов обмолота проса примерно 117тыс.т.

В ходе работы определена полидисперсность образцов, последовательно обработанных при Т= 600°С и серной кислотой, как неизмельченных, так и подвергнутых измельчению рис.3.

Распределение частиц по размерам

1.         измельченные

2.         неизмельченные

После измельчения состава содержание более крупнодисперсных фракций меньше, и образуются частицы размером ~ 1*10-6-10-7м.

В литературе [44] описано получение активных углей после обработки растительных отходов термической обработкой и серной кислотой.

Из данных оптической микроскопии видно, что образцы подвергнутые обработке серной кислотой (рис. 5) и комплексно (рис. 6) ( Т=600 ºС и серной кислотой ) имеют измененную морфологию поверхности по сравнению с исходными ( рис.1). А также, образцы после комплексной обработки имеют большой разброс по размерам.

Изменения в химическом составе ООП как после термовоздействия, так и после обработки серной кислоты исследовались методами термогравиметричекого анализа.

При термораспаде полисахаридов в результате разрыва кислород-углеродных связей происходят три основных процесса: дегидратация, деполимеризация и затем глубокая деструкция с разрушением циклов и образование различных продуктов распада.[14]

В результате дегидратации (200-250ºС) образуются сопряженные ненасыщенные структуры, формирующие при пиролизе карбонизованный остаток. Дегидратация это цепной радикальный процесс. При дегидратации протекают три типа реакций: внутримолекулярная с отщеплением воды и появлением двойной связи, внутримолекулярная с образованием внутрициклической эфирной связи и межмолекулярная с образованием межмолекулярной эфирной связи

Деструкция исходных ООП начинается 160˚С, потери массы по завершению основной стадии деструкции составляют 62%.

Воздействие температуры в 250˚С при продолжительности термообработки 90 мин. существенно не влияют на термостойкость образцов. У образцов обработанных как разбавленной, так и концентрированной серной кислотой, отмечены существенные отличия в термостойкости в сравнении с исходным ООП. О чем свидетельствует повышение начальной температуры разложения основной стадии деструкции. Снижаются потери массы в широком интервале температур. Предположительно этот процесс соответствует процессу окисления отходов и образованию графитовых структур.


Таблица 3.

Показатели пиролиза

Виды отходов

Тн-Тк,

˚С

 

mн-mк,

%

Потери массы,

% при температурах (Со)

 

100 200 300 400 500 600

 

Отходы обмолота проса (исходные) 160-300 8-38 6 14 38 50,5 57,5 62

 

ООП термообраб.

(Т=250˚С) 90 мин

165-360 5-44 4 7 34,5 47 56 61,5

 

ООП, обраб. конц. серной кислотой 250-660 28-78 5 20 34 44 67 78

 

ООП термообраб (Т=600˚С) обраб. конц. серной кислотой 300-700 10-67 6 8 10 18 39 55

 

ООП термообраб. (Т=600˚С) обраб. серной и азотной кислотой
ООП термообраб. (Т=600˚С) обраб. серной и азотной кислотой повторно термообраб. (Т=900˚С)

На первой стадии, при воздействии температур на образцы, удаляется сорбированная вода, содержание которой составляет ~ 8 %. Начальная температура разложения отходов обработанных концентрированной H2SO4 составляет 250°С, с большими потерями массы. Для термообработанных при более высоких температурах (600°С) и окисленных отходов наблюдается повышение начальной температуры деструкции до 300°С и снижение потери массы.

Изменения в структуре материала исследовали также методом ИКС. Показано наличие в спектрах ИКС, (рис.6) исходных ООП глубокой полосы поглощения в области 3200 – 3500 см-1, связанных водородными связями ОН¯ групп. Полосы поглощения при 2923 см-1 следует отнести к валентным колебаниям СН3 групп, а при 2853 см-1 -к валентным колебаниям СН2 групп. Обнаружены также валентные колебания кольца  при 1090 см-1, и мостика ( С–О–С– ) при 1060 см-1 и 898 см-1 .

При термической обработке ООП, основным составляющим которых является целлюлоза, в интервале 300-500°С происходит зарождение микроструктуры углерода. Происходит дегидратация, гомолитический разрыв наименее прочных С-О-С и С-С связей внутри кольца и рекомбинация короткоживущих свободных радикалов с образованием графитизированных слоев.

У термообработанных при 400ºС ООП, кр.4, уменьшается интенсивность полосы поглощения ОН групп, практически исчезают полосы, соответствующие поглощению – С – О – С – глюкозидной связи (1060 и 898 см-1) и увеличивается интенсивность колебаний СН2 групп (2853 см-1).

По данным ИКС при термической обработке отходов высокими температурами (400, 500, 600°С), в составе всех образцов сохраняется органическая составляющая, т.к. сохраняются валентные колебания СН-связей СН2-групп. Происходит уменьшение содержания групп – OH при (3411см-1), CH3 при (2923см-1), CH2 при (2853см-1), CH при (3056см-1), увеличивается интенсивность пика при 1060см-1, который соответствует колебанию С-О-С связи. С увеличением температуры все эти явления наблюдаются в большей степени. Тоже наблюдается при комплексном воздействии термообработки и окисления. Это происходит в результате внутримолекулярной реакции с образованием внутрициклических эфирных связей. При коротком времени воздействия повышенными температурами происходит дегидратация, за счет этого возрастают пики колебания С-О-С связей с последующим разрывом основной цепи. В результате повышается термостабильность.

Определена насыпная плотность ООП, подвергнутых комплексной обработке(табл.4) Таблица 4.

Виды отходов

плотность (r), кг/м3

ООП (исх.) 185,658

ООП (обраб. конц.H2SO4 )

235,493
ООП термообраб.(t=500°С) 250,155
ООП термообраб.( t=650°С) 187,318
ООП термообраб. (t=900°С) 210,543

Об изменениях в структуре материала можно судить также по водопоглощению.

Изучена сорбция воды

1. ООП термообработанных при Т= 600 ºС и серной и азотной кислотами

2. Исходных ООП термообработанных при Т=900 ºС

3. Исходных ООП обработанных серной кислотой

Из графиков видно, что наибольшей сорбционной способностью обладает образец, обработанный при Т=900°С, это объясняется более развитой активной поверхностью.

Восстановление сорбционной способности после многократного удаления влаги снижается незначительно.

2.4.Выводы и практические рекомендации

Показана возможность модифицирования отходов крупяных производств и их использования в качестве сорбционного материала. С использованием комплекса методов (ИКС, ТГА, водопоглощения, оптической микроскопии) изучены свойства целлюлозосодержащих отходов крупяных производств – отходов обмолота проса (ООП).


3.Раздел «Безопасность и экология проекта»

В процессе модификации отходов сельскохозяйственного производства используются вредное вещество - серная кислота, второго класса опасности.[42]

Серная кислота.

Физические и химические свойства. Маслянистая, в чистом виде прозрачная бесцветная жидкость. Тплавл.=10,35°С; Ткип.=330°С (с разл.); ρ=1,834 г/мл. С водой смешивается во. всех отношениях, выделяя большое количество тепла. Начиная с 200°С и выше выделяет пары SО3, которые с водяным паром воздуха образуют белый туман. Концентрированная H2SO4 - довольно сильный окислитель.

Токсическое действие.

Раздражает и прижигает слизистые верхних дыхательных путей, поражает легкие. При попадании на кожу вызывает тяже­лые ожоги, Аэрозоль H2SO4 обладает более выраженным токсическим действием, чем SO2.

Основными опасностями серной кислоты связаны с повышением отравлений и травматизма, поэтому требуют повседневного внимания к вопросам техники безопасности, производственной санитарии и пожарной безопасности. При нарушении режимов работы в этом производстве, а также при возникновении различных аварий и неполадок возможно попадание в рабочие помещения и зону обслуживания оборудования больших количеств пожаро - и взрывоопасных, токсичных веществ в виде газов, паров, что в ряде случаев приводит к возникновению взрывов, пожаров и отравлению рабочих. Особое внимание необходимо обращать на правильную организацию рабочего места, строгое выполнение требований обязательных инструкций, правил техники безопасности.

Основными опасностями являются:

1)         химические ожоги серной кислотой при нарушении герметичности аппаратуры, трубопроводов, запорной арматуры;

2)         термические ожоги жидкой серой, пароводяной смесью и при соприкосновении с горячими поверхностями аппаратуры, коммуникаций, паропроводов;

3)         отравление сернистым и серным ангидридами при выбросе технологического газа в рабочую зону;

4)         поражение электрическим током при нарушении изоляции электрооборудования;

5)         механические травмы при неправильном обслуживании механизмов и агрегатов с движущимися и вращающимися частями;

6)         взрывоопасность газовой смеси при неправильном процессе розжига газовых горелок и их неправильной эксплуатации.

Действие на кожу. Концентрированной H2SO4 вызывает сильное жжение. Если ее сразу же смыть водой, действие может ограничиться краснотой. В противном случае кислота быстро проникает вглубь тканей, образуется струп. При отпадении струпа обнажается глубокая язва. Заживление оканчивается образованием пло­ских рубцов или мясистых разрастаний, выступающих за края язвы. Тяжелые последствия может вызвать происходящее затем стяжение рубцов. Излечиваются ожоги в среднем в течение 6 недель. При очень большой поверхности пораже­ния - часто смертельный исход. Очень тяжелы поражения при попадании H2SO4 в глаза.

Индивидуальная защита.

Меры предупреждения. Фильтрующие промышлен­ные противогазы марок В (с фильтром), БКФ, М; шланговые противогазы ПШ-1, ПШ-2. Защитные очки или маски и щитки из оргстекла и др. Спецодежда (брюки и куртки или комбинезон, фартуки, перчатки или рукавицы) из кислото­стойких тканей: ШХВ-30, ШЛ,: нитрон, лавсан, кислотозащитное сукно ШЛ-40, СВХ-1, смешанные ткани из лавсана с хлоропреном и др. Резиновые сапоги. Механизация розлива, упаковки, перемещения в цехах. Нейтрализация пролитой кислоты (меланжа) порошком МЛ (кальцинированная сода 60%, жидкое стекло 30%, сульфонал 10%) [43]

С экологической точки зрения, в данном проекте присутствуют стоки серной кислоты в промывных водах, также при термообработке выделяются оксиды углерода и углеводороды.

Для обезвреживания данных загрязнителей, мы предлагаем использовать доломитовые фильтры для нейтрализации стоков, и адсорбер для обезвреживания вредных выбросов.


Список используемой литературы

1.Состояние и перспективы развития промышленности переработки пластмасс в России // Пластические массы .- 2005. - №5. - C.3-7.

2.Брагинский В.А. Обсуждение актуальных проблем производства изделий из пластмасс в России / Брагинский В.А.// Пластические массы. - 2000. - №8. - с.4-6.

3. Панова Л.Г. Наполнители для полимерных композиционных материалов: Учеб. пособие. Сарат. гос. техн. ун-т, 2002. – с. 72.

4.Технология пластических масс / Под ред. В.В. Коршака – 3-е изд. перераб. и доп. – М.: Химия, 1985-560с.

5. Быков Е.А. Современные наполнители важный фактор повышения конкурентоспособности композитов / Е.А. Быков, В.В. Дегтярев // Пластические массы – 2006 -№1 – с.32.

 6.Николаев А.Ф. Синтетические полимеры и пластмассы на их основе – 2-е изд., М.-Л.,1964.

7.Артеменко С.Е. Связующие в производстве полимерных композиционных материалов / С.Е. Артеменко, Л.Г. Панова// Учебное пособие. - Саратов: Сар. гос. техн. ун-т, 1994. – 97с.

8.Липатов Ю.С. Физико-химические основы наполненных полимеров. – М.: Химия, 1991 – 256с.

9.Фойгт И. Стабилизация синтетических полимеров противодействием тепла и света / Под ред. Б.М. Коварской. Пер. с англ. – Л.: Химия, 1972 – 544с.

10.Дудченко В.К. Сверхмолекулярный полиэтилен: Новая реальность отечественной промышленности полиолефинов / Дудченко В.К. // Пластические массы – 2003 - №8 - -с.3-5.

11.Коршак В.В. Термостойкие полимеры. Наука, 1975 – 410с.

12.Грасси Н. Химия процессов деструкции полимеров / Под ред. Ю.М. Малинского. Пер. с англ. – М.: Издатинлинг, 1975 – 252с.

13.Эмануэль Н.М. Курс химической кинетики / Н.М. Эмануэль, Д.Г. Кнорре. – М.: Высшая школа, 1972 –563с.

14. Пономаренко А.А. Использование отходов сельского хозяйства при производстве изделий из полиэтилена / А.А. Пономаренко, И.А. Челышева, Л.Г. Панова // Экология и промышленность России.–2006.–№8.-С. 4-6.

15. Комарова Т.В., Пузырева Е.В., Пучков С.В. Изменение структуры и свойств природного графита при окислительной и последующей термической обработках.// Труды МХТИ им. Д.И. Менделеева.- 1986.- Т.141.- С.75-83.

16. Черныш И.Г., Бурая И.Д. Исследование процесса окисления графита раствором бихромата калия в серной кислоте.// Химия твердого топлива.- 1990.- N1.- C.123-127.

17. Технологические аспекты интеркалирования графита серной кислотой./ С.Г. Бондаренко, Л.А. Рыкова, Г.А. Статюха и др.// Химия твердого топлива.- 1988.- N4.- C.141-143.

18. Schwab G.M., Ulrich H. Verdichtete graphite// Kolloid Z. und Z. fuer Polimere.- 1963.- B.190.- N2.- S.108-115.

19. Чалых Е.Ф., Житов Б.Н., Королев Ю.Г. Технология углеграфитовых материалов. М.: Наука, 1981.- 44c.

20. Пузырева Е.В., Комарова Т.В., Федосеев С.Д. Влияние различных факторов на процесс получения вспученного графита// Хим. тв. топлива.- 1982.- №2.- С.119-121.

21. Ионов С.Г., Удод Э.Б., Куликов Л.А. Синтез и физико-химические исследования гетероинтеркалированных соединений в системе графит-FeCl3-ICl, графит-CuCl2-ICl.// Тез. докл. I Всес. конф. "Хим. и физ. соед. внедрения".- Ростов-на Дону: 1990.- С.13.

22. Никольская И.В. и др. // Журн. орган. химии. 1989. Т.59, №12. С. 2653.

23. Махорин К.Е., Кожан А.П., Веселов В.В. Вспучивание природного графита, обработанного серной кислотой.// Химическая технология.- 1985.- N2.- C.3-6.

24. Anderson S.H., Chung D.D.L. Exfoliation of intercalated graphite// Carbon.- 1984.- V.22.- N3.- P.253-263.

25. Юрковский И.М., Смирнова Т.Ю., Малей Л.С. Структурные особенности расширенного графита.// Химия твердого топлива.- 1986.- N1.- C.127-131.

26. Фиалков А.С., Малей Л.С. Некоторые аспекты технологии изготовления расширенного графита.// Электроугольные и металлокерамические изделия для электротехники.- M.: 1985.- C.65-72.

27. Изучение формирования порошкообразных материалов без применения полимерных связующих/ Антонов А.Н., Тимонин В.А., Федосеев С.Д., Макевнина Л.Ф. // Хим. тв. топлива.- 1984.- №1.- С.114-117.

28. Гибкая графитовая фольга и способ ее получения./ В.В. Авдеев, И.В. Никольская, Л.А. Монякина, А.В. Козлов, А.Г. Мандреа, К.В. Геодакян, В.Б. Савельев, С.Г. Ионов// Пат. РФ №2038337, С 04 В 35/52 от 27.06.95.

29. Р. Киршнек. Уплотнительные системы на основе графита.// Химическая и нефтегазовое машиностроение. 2000. №8 с.31-33.

30. В.В. Авдеев, Г.А. Уланов. Высокоэффективные уплотнительные изделия нового поколения серии "Графлекс" // Матер. Семенара – совещ. "Проблемы надежности эксплуатации и обновления основных фондов технологических установок НПЗ и пути их решения", Москва 6-8 февраля 2001г., Изд-во ЦНИИТ Энефтехим. М.: 2001г. с. 88-91.

31. Д.Б. Бирюков, В.П. Воронин, Н.А. Зройчиков, Г.А. Уланов. Проблемы обеспечения герметичности фланцевых разъемов ПВД.// Электрические станции. – 2000. №5. с.31-34.

32. Ярошенко А.П., Савоськин М.В. Высококачественные вспучивающиеся соединения интеркалирования графита - новые подходы к химии и технологии.// ЖПХ.- 1995.- Т.68.- N8.- с.1302- 1306.

33. Годунов И.А. Терморасширяющиеся огнезащитные материалы "ОГРАКС"// Пожарная безопасность, 2001. №3 с.199-201.

34. Ярошенко А.П., Попов А.Ф., Шапранов В.В. Технологические аспекты синтеза солей графита (обзор).// ЖПХ- 1994.- т.67- N.2- C.204-211.

35. Тарутина, Л. И. Спектральный анализ полимеров / Л. И. Тарутина, Ф. О. Позднякова. – Л.: Химия, 1986. – 248 с.

36.  Кустанович, И. М. Спектральный анализ / И. М. Кустанович. – М.: Высшая школа, 1972. – 348 с.

37. Рабек, Я. Экспериментальные методы в химии полимеров. / Я.Рабек. – в 2-х частях. Пер. с англ. – М: Мир, 1983. – 480 с.

36.Химический состав пищевых продуктов. Книга 1: Справочные табл. содержания основных пищевых в-в и энергетические ценности пищевых продуктов / Под ред. проф., д. т. н. И. М. Скурижина - 2-е изд. доп. и пер. - М.:ВО Агропромиздат, 1987. - С. 224.

37.Пономаренко, А.А. Исследование возможности применения отходов растениеводства в качестве наполнителей эпоксидных композиций / И.А. Челышева, А.А. Пономаренко, Л.Г. Панова // Композиты ХХI века: докл. междунар. симпозиума. Саратов, 20-22 сентября 2005. - Саратов: СГТУ, 2005. - С. 364-366.

38. Пилоян, О. Г. Введение в теорию термодинамического анализа / О. Г. Пилоян. – М.: Наука, 1964. – 356 с.

39.  Васичев, Б. Н. Электронная микроскопия / Б. Н. Васичев – М.: Знание, 1981. – 64 с.

40.  Микроскоп МБС-5. Инструкция и техническое описание. – М.: Знание, 1981.

41. Гурова Т.А. Технический контроль производства пластмасс и изделий из них: Учебн. пособие для хим.-технол. Техникумов.-М.: Высш.шк., 1991.- 225с.

 42.СниП 2.09-04-87 Административные и бытовые здания / Минземстрой России. – М.: ГУП ЦПП. – 1998. – 18с.

 43.Вредные вещества в промышленности. Справочник для химиков, инженеров и врачей.- 7-е изд., перераб. и доп.-Т.3 Неорганические и элементорганические соединения / под ред. Н.В. Лазарева– Л.: Химия.- 1976. –606 с.

44. Кинле, Х. Активные угли и их промышленное применение. / Х. Кинле, Э.Бадер. – пер. с нем. – Л.: Химия, 1984. 216с.


Страницы: 1, 2


© 2010 Собрание рефератов