Рефераты

Реферат: Подвижная фаза для жидкостной хроматографии

Реферат: Подвижная фаза для жидкостной хроматографии

Реферат на тему:

Подвижная фаза для жидкостной хроматографии


СОДЕРЖАНИЕ

1. Подвижная фаза для ВЭЖХ

1.1 Основные требования к растворителям

1.2 Элюирующая сила растворителя и элюотропные ряды

1.1 Элюотропные серии для адсорбционной хроматографии на силикагеле

1.3 Смеси растворителей

1.5 Очистка растворителей для ВЭЖХ

1.4 Селективность растворителя

Литература


1. ПОДВИЖНАЯ ФАЗА ДЛЯ ВЭЖХ

Роль подвижной фазы (растворителя) в жидкостной хроматографии весьма многообразна. Наряду с чисто транспортной функцией растворитель активно участвует в самом процессе разделения и оказывает существенное влияние на возможности детектирования. Часто незначительное изменение состава подвижной фазы дает возможность оптимизировать процесс, улучшить форму пиков, разрешение отдельных компонентов и даже изменить механизм разделения. Поэтому при выборе растворителей необходимо учитывать весь комплекс их свойств, в той или иной степени влияющих на проведение хроматографического эксперимента. Свойства растворителей для ВЭЖХ приведены в приложении 2. Данные по физико-химическим характеристикам растворителей в основном взяты из наиболее авторитетных источников.

1.1 ОСНОВНЫЕ ТРЕБОВАНИЯ К РАСТВОРИТЕЛЯМ

Растворители, применяемые в ВЭЖХ, должны удовлетворять следующим основным требованиям: чистота, химическая инертность, совместимость с детектором, достаточная растворяющая способность по отношению к анализируемым веществам, низкая вязкость, безопасность, доступность. В некоторых случаях существенное значение имеют смешиваемость с другими растворителями, температура кипения и возможность легкого извлечения вещества из элюата. Чистота растворителя в жидкостной хроматографии имеет очень большое значение, так как различные примеси в подвижной фазе влияют на все основные стадии процесса: подачу растворителя, разделение в колонке, детектирование и воспроизводимость результатов. Требуемая степень чистоты растворителя определяется выбранным вариантом разделения и используемой аппаратурой. Наличие примесей в растворителе может вызвать следующие типичные затруднения.

1.   Ухудшение эффективности разделения и воспроизводимости результатов (пример неконтролируемая влажность растворителя в адсорбционной хроматографии).

2.   Сильное отклонение нулевой линии и образование ложных пиков при градиентном элюировании.

3.   Ухудшение возможностей детектирования (примеры — примеси олефинов в парафиновых углеводородах при УФ-детектировании, примесь этанола в хлороформе при ИК-детектировании).

4.   Порча сорбента: примеси оснований приводят к растворению силикагеля; примеси диенов и других лабильных соединений осмоляются и блокируют поверхность адсорбентов, особенно оксида алюминия; примеси карбонильных соединений реагируют с привитыми сорбентами, содержащими аминогруппу; пероксиды окисляют привитые фазы и полистирольные гели.

5.   Загрязнение веществ, выделяемых из элюата. В препаративной хроматографии приходится выделять вещества из очень разбавленных растворов. При этом даже незначительные примеси или добавки, которые не мешают аналитическому разделению, могут концентрироваться в извлекаемом веществе, существенно снижая его чистоту.

6.   Разложение или химическое изменение компонентов пробы (типичные примеры — гидролиз многих металлоорганических соединений, окисление лабильных веществ пероксидами или растворенным кислородом).

7.   Коррозия аппаратуры (пример — примесь НСl в хлорсодержащих растворителях).

Химическая инертность. Все, что сказано выше о химически активных примесях, имеет гораздо большее значение применительно к химической активности самих растворителей. Дополнительно можно отметить, что такие классы соединений, как кетоны, алифатические и ароматические амины, следует применять с особой осторожностью и только в тех случаях, когда их трудно заменить более стабильными растворителями. Такие элюенты, как хлорорганические соединения, тетрагидрофуран и другие простые эфиры, следует использовать только свежеочищенными. Совместимость с детектором. Наиболее распространенными детекторами в настоящее время являются УФ-детекторы и дифференциальные рефрактометры. Возможность использования тех или иных растворителей в сочетании с УФ-детектором принято определять минимальной длиной волны, на которой при оптическом пути 10 мм падение интенсивности светового потока составляет 90%. Граничные длины волн, относящиеся к растворителям очень высокой степени очистки, приведены в приложении 2. Рассмотрение этих данных показывает, что с УФ-детектором практически не могут быть использованы такие растворители, как бензол, толуол, тетрахлорид углерода, диметилформамид и хлороформ, а также сложные эфиры и кетоны. С рефрактометрическим детектором в принципе можно применять любые растворители, но его чувствительность определяется разностью показателей преломления растворителя и анализируемого вещества. Поэтому при выборе растворителе следует учитывать его показатель преломления. Вязкость растворителя должна быть по возможности низкой, так как ее повышение ведет к ухудшению массопередачи, а тем самым и эффективности разделения, а также затрудняет работу насосов. При прочих равных условиях следует выбирать растворители, имеющие вязкость 0,5—0,7 мПа•с при температуре разделения. Безопасность работы с теми или иными растворителями определяется их воспламеняемостью и токсичностью. Практически все растворители, применяемые в ВЭЖХ, либо имеют весьма низкую температуру вспышки, либо в определенной степени токсичны. Поэтому помещение, в котором проводят работы по жидкостной хроматографии, должно иметь эффективную приточно-вытяжную вентиляцию. На рабочем месте недопустимы плохо продуваемые и застойные зоны, так как в них могут накапливаться пары растворителей, имеющие большую плотность чем воздух. Нижний предел взрываемости многих растворителей составляет 1—2%, поэтому в застойных зонах возможно образование взрывоопасной смеси. Во всех случаях следует выбирать наименее пожароопасные и токсичные растворители, руководствуясь соответствующими данными, приведенными в приложении. Так, диэтиловый эфир можно заменить диизопропиловым, а бензол — толуолом практически без ущерба для разделения. С нашей точки зрения, токсичность является более важным фактором, чем пожароопасность. При хорошей организации рабочего места и тщательном соблюдении правил техники безопасности опасность загорания практически исключена, а контакта с растворителем полностью избежать невозможно. Многие ароматические и хлорсодержащие растворители обладают способностью накапливаться в организме человека. По последним данным, некоторые из них, считавшиеся ранее малотоксичными (хлороформ, тетрахлорэтилен) являются канцерогенами, поэтому работа с этими растворителями требует осторожности. Следует отметить, что ПДК необходимо рассматривать с учетом температуры кипения растворителя: хотя метиленхлорид и хлорбензол имеют одинаковую ПДК (50 мг/м3), но при прочих равных условиях в случае низкокипящего метиленхлорида эта величина достигается значительно легче, чем для хлорбензола. Температура кипения — менее существенный фактор, чем характеристики, рассмотренные выше. Ее следует учитывать в основном в двух аспектах: в надежности работы насосов и детекторов и легкости выделения вещества из элюата. Низкокипящие растворители часто образуют пузырьки в насосах и детекторах. При использовании наиболее распространенных в настоящее время плунжерных насосов вероятность образования пузырьков тем больше, чем выше давление паров растворителя и скорость плунжера в фазе всасывания. Наличие пузырьков в насосе резко снижает точность подачи растворителя, а пузырьки в детекторе вызывают сильный шум и нестабильность нулевой линии. Для предотвращения этого явления проще всего применять растворители, температура кипения которых по крайней мере на 20—50.°Свыше комнатной. С другой стороны, при необходимости препаративного выделения вещества нецелесообразно использовать высококипящие растворители. Смешиваемость с другими растворителями необходимо учитывать при работе в режиме градиентного элюирования и при подготовке анализируемого образца с использованием предварительного экстракционного разделения. Следует помнить, что подвижная фаза в ВЭЖХ всегда должна быть гомогенной. Однако такие важные полярные растворители, как метанол и ацетонитрил, ограниченно смешиваются с гексаном. Для расширения диапазона концентраций, соответствующих гомогенным смесям, гексан заменяют на циклогексан или изооктан. Полная смешиваемость в подобных системах достигается заменой полярного компонента на этанол или изопропанол.

1.2 ЭЛЮИРУЮЩАЯ СИЛА РАСТВОРИТЕЛЯ И ЭЛЮОТРОПНЫЕ РЯДЫ

Взаимодействие растворителя с растворенным веществом определяется комплексом четырех основных типов межмолекулярных взаимодействий: дисперсионного, индукционного, донорно-акцепторного (включая образование водородной связи) и диэлектрического (сольватация ионов). Суммарный эффект всех типов взаимодействий определяет полярность растворителя, а преимущественное проявление какого-либо из них — его селективность. В процессе развития жидкостной распределительной хроматографии предлагались различные способы оценки относительной полярности растворителей. В качестве меры полярности, принят параметр Р’, который позволяет заметно надежнее оценивать относительную активность растворителей, чем широко используемый ранее параметр растворимости Гильдебранда. Полярность растворителя определяет его элюирующую силу: в адсорбционной и нормально-фазной распределительной хроматографии с увеличением полярности элюирующая сила растворителя возрастает, а в обращенно-фазной — снижается. Чем больше элюирующая сила подвижной фазы, тем меньше коэффициент емкости для данного вещества на данном сорбенте. Расположение растворителей в соответствии с возрастанием их элюирующей силы называют элюотропным рядом. В адсорбционной хроматографии общепринятым является элюотропный ряд Снайдера. Растворители, перечисленные в приложении 2, расположены в соответствии с этим рядом. Мерой элюирующей силы растворителя служит величина ε°, экспериментально определенная для ряда растворителей на оксиде алюминия в сравнении с n-пентаном (ε°=0). Величина ε° пропорциональна разности удельных энергий взаимодействий растворителя и пентана с чистой поверхностью адсорбента. Для силикагеля значения ε° в среднем в 1,25 раза ниже, чем для оксида алюминия.

Таблица 1.1 Элюотропные серии для адсорбционной хроматографии на силикагеле

ε°                                   I                 II         III

0,00                    Пентан          Пентан                          Пентан

0,05 Изопропилхлорид                        Дихлорэтан(3%) —                          Бензол (4%) — пентан

(4,2%) —пентан                                      Пентан

0,10 Изопропилхлорид                        Дихлорэтан(7%)                                    — Бензол (11%) — пентан

(10%) —пентан                                       пентан

0,15 Изопропилхлорид Дихлорэтан(14%) — Бензол (26%) — пентан

(21 %) — пентан пентан

0,20 Эфир (4%) —пентан Дихлорэтан(26%) —                            Этилацетат(4%) —

Пентан                              пентан

0.25 Эфир (11%) — Дихлорэтан(50%) — Этилацетат(11%)—

пентан                               пентан            пентан

0,30 Эфир (23%) — Дихлорэтан(82%) — Этилацетат (23%) —

пентан                               пентан               пентан

0,35 Эфир (56%) — Ацетонитрил (3 %) — Этилацетат (56%) —

пентан                               бензол               пентан

0,40 Метанол (2 %) — Ацетонитрил (11%) —

эфир                           бензол

0.45 Метанол (4%) — Ацетонитрил (31 %)—

эфир                           бензол

0,50 Метанол (8%) — Ацетонитрил

эфир 0,55 Метанол (20%) —

эфир 0,60 Метанол (50%) —

Примечание. Указано содержание сильного растворителя (в % об.), в элюенте.

———————————————

Выведенный элюотропный ряд справедлив для всех сорбентов оксидного типа и, в общем случае, практически совпадает с рядом, построенным по возрастанию диэлектрической проницаемости растворителей. Для адсорбционной хроматографии разработаны также элюотропные серии (I—III), представляющие собой смеси растворителей с постепенно возрастающей элюирующей силой. Примеры таких серий приведены в табл. 1.1. Влияние элюирующей силы растворителя на k' ориентировочно можно оценить по следующим соотношениям: k' изменяется в 2,2—3 раза при измерении Р' на единицу (распределительная хроматография) и в 3—4 раза—при изменении ε° на 0,05 (адсорбционная хроматография).

1.3 СМЕСИ РАСТВОРИТЕЛЕЙ

В практической работе индивидуальные растворители (за исключением эксклюзионной хроматографии) применяют редко, так как использование смесей растворителей резко расширяет возможности жидкостной хроматографии. Это относится и к регулированию элюирующей силы подвижной фазы. B распределительной хроматографии полярность смеси растворителей А (слабый растворитель) и В (сильный растворитель) можно легко рассчитать по формуле

Pсм'=VaPа'+VbPb',


где Va и Vb — объемная доля; Р'а и Р'b — полярность растворителей А и В соответственно. В адсорбционной хроматографии уже небольшие добавки растворителя В существенно увеличивают элюирующую силу, а при дальнейшем увеличении его концентрации элюирующая сила асимптотически приближается к величине ε0 растворителя В. Следует отметить, что в адсорбционной хроматографии лучше использовать смеси растворителей с достаточно близкими значениями ε°. В противном случае часто наблюдаются «вторичные эффекты» растворителя, существенно снижающие воспроизводимость результатов. Более детально оптимизация состава смешанного растворителя рассмотрена в разделах, посвященных отдельным вариантам ВЭЖХ.

1.4 СЕЛЕКТИВНОСТЬ РАСТВОРИТЕЛЯ

При анализе многокомпонентных смесей, содержащих соединения различной химической природы, часто наблюдается перекрывание некоторых тиков. Наилучшим способом оптимизации разделения в этом случае является изменение селективности подвижной фазы при той же самой элюирующей силе. Селективность растворителей определяется соотношением вкладов различных типов межмолекулярных взаимодействий в системе растворитель — вещество. На предложенной Снайдером треугольной диаграмме растворители разбиты на восемь групп, различающихся по типу селективности (рис.1.1). Крайние группы I, II, V я VIII имеют наиболее ярко выраженную селективность: в группу I ходят акцепторы протонов (простые эфиры, амины), в группу VIII—доноры протонов (хлороформ, вода, м-крезол), в группу II—доноры-акцепторы (спирты) и в группу V—растворители, предпочтительно взаимодействующие с веществами, имеющими большой дипольный момент (метиленхлорид, дихлорэтан), Растворители группы VII (ароматические соединения, нитроалканы) характеризуются повышенным взаимодействием с акцепторами электронов. Принадлежность растворителя к определенной группе также указана в приложении 2.

Рис. 1.1 Группы селективности растворителей:

Xe — протоноакцепторные свойства; Xd протонодонорные свойства; Хn — дипольвое взаимодействие

Селективность подвижной фазы изменяют путем замены растворителя В, использованного для получения необходимой элюирующей силы, на растворитель, относящийся к другой группе, и подбора такой его концентрации, которая обеспечивал бы ту же элюирующую силу подвижной фазы. В различных видах жидкостной хроматографии решение этой задачи имеет свои специфические особенности, рассмотренные в соответствующих разделах.

1.5 ОЧИСТКА РАСТВОРИТЕЛЕЙ ДЛЯ ВЭЖХ

Хорошо известно, что абсолютно чистых веществ в природе не бывает. Поэтому к вопросу о чистоте растворителя следует подходить разумно. Одни и те же примеси в разных условиях могут либо вообще не влиять на результат, либо сделать анализ невозможным. Так, незначительная примесь олефинов в алкановом растворителе совершенно не мешает при работе с рефрактометром, но практически не позволяет проводить детектирование УФ-детектором при длине волны менее 260 нм. Напротив, даже заметная добавка гептана к гексану не окажет никакого влияния на сигнал УФ-детектора, но исказит количественные данные рефрактометра. В адсорбционной хроматографии особое значение имеет тщательная осушка растворителей, так как даже небольшое изменение содержания воды в подвижной фазе может заметно изменить k' и степень разделения компонентов. Требования к чистоте растворителя при градиентном элюировании значительно выше, чем при изократическом. В процессе градиентного элюирования примеси, содержащиеся в растворителях, концентрируются в начале колонки и вымываются из нее по мере возрастания элюирующей силы подвижной фазы. При этом наблюдается сильный дрейф нулевой линии, а некоторые примеси элюируются узкими зонами и регистрируются детектором в виде самостоятельных пиков. В изократичеоком режиме примеси в начале эксперимента также могут концентрироваться на сорбенте, но в системе достаточно быстро устанавливается динамическое равновесие, и нулевая линия выравнивается на каком-то определенном уровне сигнала детектора. Этот сигнал во многих случаях можно скомпенсировать электрически, но при этом соответственно уменьшается линейный динамический диапазон детектора. Не менее важной является очистка растворителей от механических примесей (пыль из атмосферы, частицы адсорбентов и т.п.), которые забивают фильтры и нарушают нормальную работу насосов. Для удаления этих примесей растворители необходимо фильтровать через фильтры с размером пор приблизительно 0,5 мкм. Основными методами очистки растворителей являются перегонка и адсорбционное отделение примесей. Часто для достижения требуемой чистоты достаточно простой перегонки. Однако и в тех случаях, когда необходима адсорбционная очистка, целесообразно сначала высушить и перегнать растворитель. При этом на том же количестве адсорбента можно получить заметно больше очищенного продукта. Общей проблемой для всех растворителей является удаление влаги. Многие растворители образуют с водой азеотропные смеси, что позволяет отделить основное количество воды отгонкой смеси. Для полного удаления влаги используют молекулярные сита — цеолиты типа NaA (4А) или КА (3А), которые предварительно активируют прокаливанием в муфельной печи при 420—450 °С. Адсорбционную очистку проводят методом классической колоночной хроматографии. В качестве адсорбентов используют оксид алюминия и силикагель с большой удельной поверхностью (например, КСМ-5) и размером зерна 0,1—0,5 мм. Сорбенты предварительно сушат в течение нескольких часов при 250—300 °С и 160—180 °С. Обычно применяют стеклянные колонки достаточно большой вместимости с отношением высоты к диаметру в пределах 20—30 и краном, работающим без смазки. Наилучшие результаты достигаются на колонках с двумя слоями сорбента: нижнюю половину колонки набивают оксидом алюминия, а верхнюю—силикагелем. На колонке, содержащей по 100 г этих адсорбентов, в зависимости от их активности и содержания примесей можно очистить 300—600 мл неполярных растворителей и в полтора — два раза меньше полярных растворителей типа хлороформа или тетрагидрофурана. Качество очистки обычно контролируют по пропусканию в УФ-области. Как правило, первая порция (20—50 мл) растворителя имеет недостаточную чистоту, и ее возвращают в верхнюю часть колонки. Более полярные растворители, расположенные в элюотропном ряду Снайдера ниже этилацетата, данным методом очищать нельзя. Очищенные растворители хранят в тщательно закрытых толстостенных бутылях из темного стекла, в которые добавляют 10—20 г активного цеолита. Из бутылей с растворителями, склонными к окислению, целесообразно перед закрыванием удалить воздух продувкой сухим аргоном или азотом. Тщательная очистка растворителей достаточно сложный и трудоемкий процесс, и ее следует проводить только в той степени, в которой это действительно необходимо. Алифатические углеводороды очищают от непредельных соединений обработкой смесью концентрированных серной и азотной кислот с последующей отмывкой дистиллированной водой до нейтральной реакции и осушкой. Высушенные растворители перегоняют. Описан также метод удаления олефинов колоночной хроматографией на силикагеле, пропитанном нитратом серебра. Сорбент готовят следующим образом: на высушенный силикагель с размером зерен 100—300 мкм наносят нитрат серебра из 10%-ного водного раствора (аналогично нанесению неподвижной жидкой фазы в газовой хроматографии) и сушат при 125 °С. Из этой группы растворителей наиболее употребительным является гексан.

Хлорсодержащие углеводороды часто содержат микропримеси хлороводородной кислоты, образующейся при их хранении, под действием которой сильно коррозируют металлические детали и разрушаются адсорбенты. Кислоту удаляют адсорбционной очисткой на щелочном оксиде алюминия. Среди хлорсодержащих растворителей особой лабильностью отличается хлороформ, который легко разлагается под действием света с образованием фосгена. Для замедления этой реакции хлороформ стабилизируют добавкой 0,5—1% этилового спирта. Таким образом, в хлороформе обычно одновременно присутствуют примеси НСl, этилового спирта и фосгена. Для их удаления продажный хлороформ промывают водой и перегоняют, отделяя основное количество воды в виде азеотропной смеси. Перегнанный хлороформ наливают в бутыль из темного стекла и добавляют 5—10% (об.) активного цеолита СаА (5А). Непосредственно перед употреблением растворитель еще раз перегоняют. Общим правилом при работе с хлорсодержащими углеводородами является использование только свежеперегнанных растворителей. Их смеси с другими растворителями также готовят в расчете на суточную потребность. Простые эфиры, особенно циклического строения, легко окисляются воздухом с образованием пероксидов. Присутствие последних крайне нежелательно, так как они разрушают сорбенты с привитой фазой и полимерные сорбенты, а также окисляют лабильные компоненты анализируемых смесей и поглощают в УФ-области. Наиболее часто из растворителей этого класса применяют тетрагидрофуран, обычно стабилизированный гидрохиноном. Перед перегонкой проверяют наличие пероксидов в тетрагидрофуране. К 1 мл растворителя прибавляют 1 мл. 10%-ного раствора KI или Nal в ледяной уксусной кислоте. При низкой концентрации пероксида раствор окрашивается в желтый цвет, а при высокой — в коричневый. При заметном содержании пероксидов во избежание взрыва при перегонке их удаляют кипячением с 0,5% Cu2Cl2 в течение 30 мин. Тетрагидрофуран после удаления пероксида хранят над твердым КОН (10—15% об.) в плотно закрытой бутыли из темного стекла в атмосфере инертного газа и перегоняют непосредственно перед. применением. Чистота полученного растворителя вполне достаточна для проведения эксклюзионной хроматографии на полужестких полистирольных гелях при детектировании рефрактометром. В других вариантах, особенно при работе с УФ-детектором, может потребоваться дополнительная адсорбционная очистка. В частности, обработка тетрагидрофурана и диизопропилового эфира цеолитами NaX и СоХ позволяет удалить до 90—99% пероксидов. Относительно недавно для замены диэтилового и диизопропилового эфиров предложен новый растворитель метил-трет-бутиловый эфир, который практически не образует пероксидов. Этот растворитель, видимо, найдет широкое применение в препаративной жидкостной хроматографии, так как устраняется опасность загрязнения выделяемых веществ продуктами окисления растворителя. Следует еще раз подчеркнуть, что при перегонке растворителей, склонных к образованию пероксидов, необходимо тщательно соблюдать технику безопасности. Перегонку следует вести на водяной или силиконовой бане, не допуская перегрева растворителя. В колбу обязательно должны быть внесены свежие инициаторы кипения (лучше всего кусочки стеклянных фильтров или пористого фторопласта); перегонку необходимо прекращать, оставляя в кубе не менее 1/5 объема загрузки. Кубовый остаток можно прибавить к свежей порции растворителя, подготовленной для химического удаления пероксидов. Ацетонитрил очищают от примесей, поглощающих в УФ-области, кипячением с перманганатом и перегонкой. В колбу вместимостью 2 л помещают 1,5 л ацетонитрила и 30 г КМnO4, кипятят с обратным холодильником 1 ч и перегоняют с дефлегматором, отбирая фракции по 200 мл. Когда в кубе останется около 200 мл продукта, перегонку прекращают. Остаток можно смешивать с новой порцией растворителя. Первую фракцию отбрасывают, а остальные проверяют на поглощение в УФ-области. Для этого заполняют рабочую кювету УФ-детектора по очереди водой высшей очистки и испытуемым растворителем (сравнительная кювета заполнена воздухом). Чем меньше при этом разница показаний самописца, тем выше качество растворителя. Обычно при такой очистке получают около 1 л ацетонитрила, пригодного для работы в градиентном режиме при 254 нм. Значительно более сложная многостадийная процедура, обеспечивающая получение растворителя с ограниченной длиной волны <200 нм, описана в работе. Изопропанол чаще всего используют как модификатор в адсорбционной хроматографии. Поэтому наиболее опасной примесью в нем является вода. Изопропанол образует с водой азеотропную смесь, кипящую при 80,3 °С и содержащую, по разным данным, 9—12% воды. При небольшой концентрации воды в исходном продукте ее легче всего удалить путем отгонки смеси. Если же содержание воды выше 5—6%, то растворитель сначала сушат над безводным сульфатом натрия. Для удаления следов воды изопропанол выдерживают над цеолитом NaA.

Метанол. Наиболее трудно отделяемой примесью в метаноле является ацетон, который лучше всего удалять обработкой гипоиодитом натрия NaOI. Раствор 25 г иода в 1 л метанола медленно вливают при перемешивании в 500 мл 1 М раствора NaOH и добавляют 150 мл воды. Через 6—10 ч отфильтровывают образовавшийся йодоформ и кипятят фильтрат с обратным холодильником до исчезновения запаха йодоформа. Большинство примесей, в том числе и основную массу воды, удаляют перегонкой. Для получения очень сухого продукта его выдерживают над цеолитами NaA или КА. Вода представляет собой важнейший растворитель в обращенно-фазной и ионообменной хроматографии. Основными примесями в воде, которые мешают проведению хроматографического процесса, являются различные соли и микропримеси углеводородов и других органических соединений. Присутствие солей недопустимо в ионообменной хроматографии, а примеси органических соединений вызывают существенные затруднения в обращенно-фазной хроматографии (особенно в градиентном элюировании) при использовании флуоресцентного и УФ-детекторов. В литературе описано много различных методов очистки воды. Для удаления минеральных солей, видимо, наилучшим является деионизация на ионообменниках с последующей перегонкой в кварцевой посуде. Удовлетворительная очистка от органических загрязнений достигается фильтрацией деионизированной воды через активированный уголь. Для высшей степени очистки воду пропускают через колонку с обращенно-фазным сорбентом, которую потом регенерируют промывкой метанолом, ацетонитрилом или тетрагидрофураном. Очень эффективным является также жесткое УФ-облучение. В обращенно-фазной хроматографии воду обычно используют в виде смесей с полярными органическими растворителями. Поэтому практически важно знать об особом свойстве таких смесей — аномально высокой вязкости.

Таблица 1.2 Максимальная вязкость органических растворителей с водой

Органический                           η20, (м2/с)105               Содержание органи- η20, (м2/с)105

компонент                                ческого компонента в

смеси с водой, % (об).

Ацетон                               0,32                       10                                   1,2

Ацетонитрил                     0,38                   10                                    1.1

Этанол                               1,20                       40                                   2,8

Метанол                            0,60                       40                                   1.8


Таблица 1.3. Вязкость водно-органических смесей

Содержание органического компонента в смеси с водой, % (об)

η25 смеми, (м2 •с)105

метанол ацетонитрил

0

20

40

60

80

100

0,89 1,26 1,42 1,40 1,01 0,57 0,89 0,91 0,98 0,76 0,58 0,34

В табл.1.2 приведены составы водно-органических смесей,. которым соответствует максимальная вязкость при 20 °С, а в табл. 6.3 — значения вязкости смесей воды с метанолом и ацетонитрилом в широком диапазоне концентрации при 25 °С. Данные таблиц показывают, что вязкость водно-органических смесей при определенных концентрациях существенно вышe, чем у индивидуальных компонентов. Это явление приводит к возрастанию сопротивления колонки и соответствующему повышению давления на ее входе, а также ухудшает разделение за счет снижения коэффициента диффузии.


Литература

1.     Kucera P.J. Chromatogr, 1980, v. 198, p. 93—109.

2.     Bowermaster J., McNair Я.J. Chromatogr, 1983, v. 279, p. 431—438.

3.     Scott R. P.F.Adv. Chromatogr., 1983, v. 22, p. 247—294.

4.     Van der Berg J. H.M., Horsels H.W.M., Groenen R.J.Af./Chromatogra-phia, 1984, v. 18, No. 10, p. 574—578.

5.     Freebairn K.W., Knox J.Я./Chromafographia, 1984, v. 19, No. 1, p. 37—47.

6.  Schoenmakers P., Billiet H.A.H., DeGalan L.J. Chromatogr, 1981, v. 205, p. 13—30.

7.     Jandera P., Churacek J.J. Chromatogr, 1980, v. 192, No. 1, p. 19—36.



© 2010 Собрание рефератов