Рефераты

Курсовая работа: Статистико-экономический анализ финансовых результатов деятельности предприятий

Агрегат (лат. aggregates) означает складываемый, суммируемый. Особенность этой формы индекса состоит в том, что в агрегатной форме непосредственно сравниваются две суммы одноименных показателей. В настоящее время это наиболее распространенная форма индексов, используемая в практической статистике многих стран мира.

Числитель и знаменатель агрегатного индекса представляют собой сумму произведений двух величин, одна из которых меняется (индексируемая величина), а другая остается неизменной в числителе и знаменателе (вес индекса).

Индексируемой величиной называется признак, изменение которого изучается (цена товаров, курс акций, затраты рабочего времени на производство продукции, количество проданных товаров и т.д.). Вес индекса - это величина, служащая для целей соизмерения индексируемых величин.

За каждым экономическим индексом стоят определенные экономические категории. Экономическое содержание индекса предопределяет методику его расчета.

Методика построения агрегатного индекса предусматривает ответ на три вопроса:

•        какая величина будет индексируемой;

•        по какому составу разнородных элементов явления необходимо исчислить индекс;

•        что будет служить весом при расчете индекса.

При выборе веса индекса принято руководствоваться следующим правилом /5/: если строится индекс количественного показателя, то веса берутся за базисный период; при построении индекса качественного показателя используются веса отчетного периода.

Построим три индекса - стоимости продукции, физического объема продукции и цен.

Стоимость продукции - это произведение количества продукции в натуральном выражении (q) на ее цену (р).

Индекс стоимости продукции, или товарооборота (), представляет собой отношение стоимости продукции текущего периода () к стоимости продукции в базисном периоде () и определяется по формуле:

                                                     (13)

Такой индекс показывает, во сколько раз возросла (уменьшилась) стоимость продукции (товарооборота) отчетного периода по сравнению с базисным, или сколько процентов составляет рост (снижение) стоимости продукции. Если из значения индекса стоимости (13) вычесть 100% (Ipq - 100), то разность покажет, на сколько процентов возросла (уменьшилась) стоимость продукции в текущем периоде по сравнению с базисным. Разность числителя и знаменателя () показывает, на сколько рублей увеличилась (уменьшилась) стоимость продукции в текущем периоде по сравнению с базисным. Аналогично строятся индексы для показателей, которые являются произведением двух сомножителей: издержек производства (произведение себестоимости единицы продукции на количество продукции); затрат времени на производство всей продукции (произведение затрат времени на производство единицы продукции на количество выработанной продукции).

Индекс физического объема продукции - это индекс количественного показателя. В этом индексе индексируемой величиной будет количество продукции в натуральном выражении, а весом - цена. Только умножив несоизмеримые между собой количества разнородной продукции на их цены, можно перейти к стоимостям продукции, которые будут уже величинами соизмеримыми. Так как индекс физического объема - индекс количественного показателя, то весами будут цены базисного периода. Тогда формула индекса примет следующий вид:

                                                     (14)

где в числителе дроби - условная стоимость произведенных в текущем периоде товаров в ценах базисного периода, а в знаменателе - фактическая стоимость товаров, произведенных в базисном периоде. Если объектом исследования является отдельное предприятие, то индекс определяется по совокупности произведенных товаров; когда объект исследования - отрасль промышленности, индекс рассчитывается по совокупности всех товаров, произведенных в отрасли, или отдельным их группам в зависимости от цели анализа. Если же объектом исследования является какой-либо регион, то индекс рассчитывается по товарам, произведенным предприятиями региона.

Индекс физического объема продукции (14) показывает, во сколько раз возросла (уменьшилась) стоимость продукции из-за роста (снижения) объема ее производства или сколько процентов составляет рост (снижение) стоимости продукции в результате изменения физического объема ее производства. Если из значения индекса физического объема продукции (14) вычесть 100% (Iq - 100), то разность покажет, на сколько процентов возросла (уменьшилась) стоимость продукции в текущем периоде по сравнению с базисным из-за роста (снижения) объема ее производства. Разность числителя и знаменателя () показывает, на сколько рублей изменилась стоимость продукции в результате роста (уменьшения) ее объема. Изменение цен на продукцию в текущем периоде по сравнению с базисным не влияет на величину индекса.

Индекс цен - это индекс качественного показателя. Индексируемой величиной будет цена товара, так как этот индекс характеризует изменение цен. Весом будет выступать количество произведенных товаров. Умножив цену товара на его количество, получаем величину, которую можно суммировать и которая представляет собой показатель, соизмеримый с другими подобными ему величинами.

Индекс цен определяется по следующей формуле:

                                                     (15)

где в числителе дроби - фактическая стоимость продукции текущего периода, а в знаменателе - условная стоимость тех же товаров в ценах базисного периода.

Индекс показывает, во сколько раз возросла (уменьшилась) стоимость продукции из-за изменения цен, или сколько процентов составляет рост (снижение) стоимости продукции в результате изменения цен. Если из значения индекса (15) вычесть 100% (Iр - 100%), то разность покажет, на сколько процентов возросла (уменьшилась) стоимость продукции из-за изменения цен, а разность числителя и знаменателя () - на сколько рублей изменилась стоимость продукции в результате роста (снижения) цен. Изменение количества произведенной продукции в текущем периоде по сравнению с базисным не влияет на величину индекса.

Стоимость продукции можно представить как произведение количества товара на его цену. Точно такая же связь существует и между индексами стоимости, физического объема и цен, т.е.:

                                                     (16)

или

                                 (17)

Разность числителя и знаменателя каждого индекса-сомножителя выражает размер изменения общей абсолютной величины под влиянием изменения одного фактора. Алгебраическая сумма этих разностей равна разности числителя и знаменателя индекса стоимости продукции:

    (18)

Равенства (16-18) выполняются в том случае, если при исчислении индекса объемного показателя веса были зафиксированы на уровне базисного периода, а при расчете индекса качественного показателя - на уровне отчетного периода.

Помимо агрегатных индексов в статистике применяется другая их форма - средневзвешенные индексы. К их исчислению прибегают тогда, когда имеющаяся в распоряжении информация не позволяет рассчитать общий агрегатный индекс. Так, если отсутствуют данные о ценах, но имеется информация о стоимости продукции в текущем периоде и известны индивидуальные индексы цен по каждому товару, то общий индекс цен как агрегатный определить нельзя, однако возможно исчислить его как средний из индивидуальных. Точно так же, если не известны количества произведенных отдельных видов продукции, но известны индивидуальные индексы и стоимость продукции базисного периода, то можно определить общий индекс физического объема продукции как средневзвешенную величину

Средний индекс- это индекс, вычисленный как средняя величина из индивидуальных индексов. Агрегатный индекс является основной формой общего индекса, поэтому средний индекс должен быть тождествен агрегатному индексу. При исчислении средних индексов используются две формы средних: арифметическая и гармоническая.

Средний арифметический индекс тождествен агрегатному индексу, если весами индивидуальных индексов будут слагаемые знаменателя агрегатного индекса. Только в этом случае величина индекса рассчитанного по формуле средней арифметической, будет равна агрегатному индексу.

Средний арифметический индекс физического объема продукции исчисляется по формуле:

                                                     (19)

Так как iq= q1 / q0, то формула этого индекса легко преобразуется  в формулу 14). Весами в формуле (19) является стоимость продукции базисного периода.

Средний арифметический индекс производительности труда определяется следующим образом:

                                                 (20)

Так как it = t0 / t1 то формула этого индекса может быть преобразована в агрегатный индекс трудоемкости продукции. Весами являются общие затраты времени на производство продукции в текущем периоде.

В статистике широко известен и другой средний арифметический индекс, который используется при анализе производительности труда. Он носит название индекса Струмипина и определяется следующим образом:

                                                 (21)

Индекс показывает, во сколько раз возросла (уменьшилась) производительность труда, или сколько процентов составил рост (снижение) производительности труда в среднем по всем единицам исследуемой совокупности.

Средние арифметические индексы чаще всего применяются на практике для расчета сводных индексов количественных показателей. При анализе качественных показателей данная форма индекса применяется для исчисления приведенных выше индексов (формулы (20)-(21)).

Индексы других качественных показателей (цен, себестоимости и т.д.) определяются по формуле средней гармонической взвешенной величины.

Средний гармонический индекс тождествен агрегатному, если индивидуальные индексы взвешены с помощью слагаемых числителя агрегатного индекса.

Например, индекс себестоимости можно исчислить так:

                                                     (22)

а индекс цен:

                                                     (23)

Таким образом, при определении среднего гармонического индекса себестоимости весами являются издержки производства текущего периода, а при вычислении индекса цен веса - стоимость продукции этого периода.

Средние индексы широко используются для анализа рынка ценных бумаг. Наиболее известными являются индексы Доу-Джонса, Стэн-дарда и Пура.

Индекс Доу-Джонса (Dow Jones Industrial Average Index) определится как средний арифметический индекс значений курсов акций, котирующихся на Нью-Йоркской фондовой бирже. Один сводный и три групповых индекса рассчитываются каждые полчаса, и ежедневно публикуется их значение на момент закрытия биржи. Групповые индексы определяются по ценам акций 30 промышленных, 20 транспортных и 15 компаний сферы услуг. Общий индекс рассчитывается по всем 65 компаниям. Их перечень был составлен в 1928 г. В качестве базисного выбран 1920 г. Первоначальная методика исчисления индекса была разработана основателем и редактором крупнейшей в США газеты «Уолл-стрит джорнел» Чарлзом Доу.

Индекс Стэндарда и Пура (Standard and Poor's 500 Stock Index) -индекс, рассчитываемый по курсам акций 500 крупнейших компаний Нью-Йоркской фондовой биржи как средний взвешенный показатель, учитывающий общее число выпущенных компанией акций. В число компаний, акции которых включены в индекс, входят 400 промышненных корпораций, 40 - финансовых, 20 - транспортных и 40 - сферы услуг.

При изучении динамики качественных показателей приходится определять изменение средней величины индексируемого показателя, которое обусловлено взаимодействием двух факторов—изменением значения индексируемого показателя у отдельных групп единиц и изменением структуры явления /10/. Под изменением структуры явления понимается изменение доли отдельных групп единиц совокупности в общей их численности. Так, средняя заработная плата на предприятии может вырасти в результате роста оплаты труда работников или увеличения доли высокооплачиваемых сотрудников. Снижение трудоемкости производства единицы продукции по совокупности предприятий отрасли может быть обусловлено повышением производительности труда на предприятиях или концентрацией производства продукции на заводах с низкой трудоемкостью. Так как на изменение среднего значения показателя оказывают воздействие два фактора, возникает задача определить степень влияния каждого из факторов на общую динамику средней.

Эта задача решается с помощью индексного метода, т.е. путем построения системы взаимосвязанных индексов, в которую включаются три индекса: переменного состава, постоянного состава и структурных сдвигов.

Индексом переменного состава называется индекс, выражающий соотношение средних уровней изучаемого явления, относящихся к разным периодам времени. Например, индекс переменного состава себестоимости продукции одного и того же вида рассчитывается по формуле:

                                    (24)

где Iпс -  индекс переменного состава.

Индекс переменного состава отражает изменение не только индексируемой величины (в данном случае себестоимости), но и структуры совокупности (весов).

Индекс постоянного (фиксированного) состава - это индекс, исчисленный с весами, зафиксированными на уровне одного какого-либо периода, и показывающий изменение только индексируемой величины.

Индекс фиксированного состава определяется как агрегатный индекс. Так, индекс фиксированного состава себестоимости продукции рассчитывают по формуле:

                                    (25)

где Iфс -  индекс фиксированного состава.

Под индексом структурных сдвигов понимают индекс, характеризующий влияние изменения структуры изучаемого явления на динамику среднего уровня этого явления. Индекс определяется по формуле (при изучении изменения среднего уровня себестоимости):

                                    (26)

где Icc  -  индекс структурных сдвигов.

Система взаимосвязанных индексов при анализе динамики средней себестоимости имеет следующий вид:

                                                (27)

 

2.2. Индексный анализ изменения средней урожайности и валового
сбора в отчетном периоде (У1П1) по сравнению с базисным периодом (УОПО)

Исходные данные для индексного анализа по хозяйствам приведены в таблице 2.1.


Таблица 2.1

Исходные данные для индексного анализа

Наименование хозяйств Исходные данные Расчетные данные
Площадь посева, га Урожайность, ц/га Валовой сбор, ц
Базис, П0 Отчет, П1 Базис, У0 Отчет, У1 Базис, У0П0 Отчет У1П1 Условн. У0П1
ТОО Рассвет 500 500 260 276 130000 138000 130000
К-з Дерябинский 305 350 213 230 64965 80500 74550
ТОО Левошевское 273 296 194 200 52962 59200 57424
ТОО им. Кирова 450 450 161 122 72450 54900 72450
АО Стандницкое 130 100 219 197 28470 19700 21900
К-з Хлебородный 226 315 189 169 42714 53235 59535
АО Землянское 337 330 194 169 65378 55770 64020
ТОО Искра 410 400 201 149 82410 59600 80400
ТОО Красноголовское 210 200 174 152 36540 30400 34800
ТОО Никольское 500 400 175 153 87500 61200 70000
ТОО Артюшанское 307 325 202 110 62014 35750 65650
К-з Мекурина 180 197 197 109 35460 21473 38809
АО Перлевское 120 80 86 101 10320 8080 6880
ТОО Староведуговское 20 150 111 97 2220 14550 16650
ТОО Старотойденское 220 146 129 94 28380 13724 18834
ТОО Николаевское 430 333 87 80 37410 26640 28971
К-з Победа 150 100 131 70 19650 7000 13100
АО Меловатское 100 120 161 71 16100 8520 19320
К-з Новосильский 290 330 244 60 70760 19800 80520
К-з Юбилейный 162 300 136 62 22032 18600 40800
ТОО Олнианское 100 100 157 50 15700 5000 15700
К-з Родина 240 200 188 31 45120 6200 37600
АО Серебрянское 150 150 164 22 24600 3300 24600
ТОО Луч 210 200 146 23 30660 4600 29200
АО Ведуга 292 118 89 21 25988 2478 10502
Итого 6312 6190 1109803 808220 1112215

1. Проведем индексный анализ средней урожайности по факторам:

Определим среднюю базисную, условную и отчетную урожайность:

Найдем общее изменение урожайности в отчетном году по отношению к базисному году:

а) в относительном выражении:

 или 74,26%

б) в абсолютном выражении:

ц/га

Таким образом, средняя урожайность сахарной свеклы в отчетном году по сравнению с базисным уменьшилась на 45,256 ц/га или на 25,74%

Определим влияние факторов на среднюю урожайность:

Влияние урожайности сахарной свеклы:

а) в относительном выражении:

 или 72,67%

б) в абсолютном выражении:

ц/га

За счет уменьшения урожайности средняя урожайность сахарной свеклы уменьшилась на 49,111 ц/га или на 27,33%

Влияние структуры посевных площадей:

а) в относительном выражении:

 или 102,19%

б) в абсолютном выражении:

ц/га

За счет улучшения структуры посевных площадей средняя урожайность сахарной свеклы увеличилась на 3,855 ц/га или на 2,19%

Относительная взаимосвязь средней урожайности по факторам:

0,7426=0,7267*1,0219=0,7426

Абсолютная взаимосвязь абсолютной урожайности по факторам:

2. Проведем индексный анализ валового сбора подсолнечника:

а) в относительном выражении:

 или 72,83%

б) в абсолютном выражении:

ц

Таким образом, валовой сбор сахарной свеклы в отчетном году по сравнению с базисным уменьшился на 301583 ц или на 27,17%.

Определим влияние факторов на валовой сбор сахарной свеклы:

1) Влияние урожайности сахарной свеклы в отдельных хозяйствах:

а) в относительном выражении:

 или 72,67%

б) в абсолютном выражении:

ц

За счет уменьшения урожайности сахарной свеклы в отдельных хозяйствах валовой сбор сахарной свеклы уменьшилась на 303995 ц или на 27,33%

2) Влияние структуры посевных площадей в отдельных хозяйствах:

а) в относительном выражении:

 или 102,19%

б) в абсолютном выражении:

ц

За счет улучшения структуры посевных площадей в отдельных хозяйствах валовой сбор сахарной свеклы увеличилась на 23862,56 ц или на 2,19%

3) Влияние изменения размера посевных площадей:

а) в относительном выражении:

 или на 98,07%

б) в абсолютном выражении:

ц

За счет уменьшения размера посевных площадей валовой сбор сахарной свеклы уменьшился на 21450,6 ц или на 1,93%

Относительная взаимосвязь по факторам:

0,7283=0,7267*1,0219*0,9807=0,7283

Абсолютная взаимосвязь абсолютной урожайности по факторам:

Таким образом, снижение средней урожайности произошло за счет уменьшения урожайности на 49,111 ц/га или на 27,33%, а за счет фактора улучшения структуры посевных площадей средняя урожайность сахарной свеклы увеличилась на 3,855 ц/га или на 2,19%.

На объем валового сбора отрицательно повлияли уменьшение урожайности сахарной свеклы в отдельных хозяйствах и уменьшение размера посевных площадей, положительно повлияло улучшение структуры посевных площадей. В результате валовой сбор сахарной свеклы в отчетном году по сравнению с базисным уменьшился на 301583 ц или на 27,17%.


З.Метод статистической группировки

3.1. Сущность группировки, их виды и значение

Группировка — это распределение единиц по группам в соответствии со следующим принципом: различия между единицами, отнесенными к одной группе, должны быть меньше, чем между единицами, отнесенными к разным группам.

Группировка лежит в основе всей дальнейшей работы с собранной информацией. На основе группировки рассчитываются сводные показатели по группам, появляется возможность их сравнения, анализа причин различий между группами, изучения взаимосвязей между признаками. Если рассчитать сводные показатели только в целом по совокупности, то мы не сможем уловить ее структуры, роли отдельных групп, их специфики.

Однородность (гомогенность) данных является исходным условием их статистического описания и анализа - вычисления и интерпретации обобщающих показателей, построения уравнения регрессии, измерения корреляции, статистического умозаключения.

Таким образом, значение группировки состоит в том, что этот метод обеспечивает обобщение данных, представление их в компактном, обозримом виде. Кроме того, группировка создает основу для последующей сводки и анализа данных.

Для изучения структурных изменений в экономике государственная статистика использует группировку хозяйственных субъектов по формам собственности и организационно-правовым формам.

Сводные показатели для отдельных групп являются типичными и устойчивыми, если, во-первых., группировка проведена правильно, во-вторых, группы имеют достаточную численность. Первое условие связано с тем, что деление на группы далеко не всегда очевидно. Выполнение второго условия необходимо, так как при достаточно большом числе единиц (не менее 5 единиц в группе) в сводных показателях взаимопогашаются случайные характеристики и проявляются закономерные, типичные.

Для решения задачи группировки нужно установить правила отнесения каждой единицы к той или иной группе.

В эти правила входят определения тех характеристик (признаков), по которым будет проводиться группировка (так называемых группировочных признаков), и их значений, отделяющих одну группу от другой (интервалов группировки).

Группировка называется простой (монотетической), если для ее построения используется один группировочный признак. Если группировка проводится по нескольким признакам, она называется сложной (политетической). Обычно такая группировка проводится как комбинационная, т.е. группы, выделенные по одному признаку, подразделяются на подгруппы по другому признаку. Казалось бы, этот метод выделения групп должен быть лучше простой группировки - ведь трудно ожидать, что различия между группами можно уловить лишь на основе одного признака. Однако комбинация признаков приводит к дроблению совокупности в геометрической прогрессии: число групп будет равно произведению числа группировочных признаков (l) на число выделенных категорий по каждому из них (т): к = l * т. Данные становятся труднообозримыми, группы включают малое число единиц, групповые показатели становятся ненадежными.

Альтернативой является проведение многомерных группировок или многомерных классификаций

Очевидно, что метод группировок тесно связан с представлением данных в виде групповых или комбинационных таблиц, а также с графическим представлением структуры совокупности ее частей и соотношений между ними.

Группировка производится с целью установления статистических связей и закономерностей, построения описания объекта, выявления структуры изучаемой совокупности. Различия в целевом назначении группировки выражаются в существующей в отечественной статистике классификации группировок: типологические, структурные, аналитические.

Типологическая группировка служит для выделения социально-экономических типов. Этот вид группировок в значительной степени определяется представлениями экспертов о том, какие типы могут встретиться в изучаемой совокупности. Чтобы пояснить особенность этой группировки, остановимся на последовательности действий для ее проведения:

1)      называются те типы явлений, которые могут быть выделены;

2)      выбираются группировочные признаки, формирующие описание типов;

3)      устанавливаются границы интервалов;

4)      группировка оформляется в таблицу, выделенные группы (на основе комбинации группировочных признаков) объединяются в намеченные типы, и определяется численность каждого из них.

Структурная группировка характеризует структуру совокупности по какому-либо одному признаку.

Аналитическая группировка характеризует взаимосвязь между двумя и более признаками, из которых один рассматривается как результат, другой (другие) — как фактор (факторы).


3.2. Группировка хозяйств по одному из факторов (Х- внесение органических удобрений на 1 га), влияющих на урожайность(У)

По данным о прибыли хозяйств района

Таблица 3.1

Исходные данные

Наименование хозяйств Урожайность, ц/га Стоимость внесенных удобрений на 1 га
ТОО Рассвет 276 104
К-з Дерябинский 230 16
ТОО Левошевское 200 36
ТОО им. Кирова 122 0
АО Стандницкое 197 373
К-з Хлебородный 169 1
АО Землянское 169 286
ТОО Искра 149 112
ТОО Красноголовское 152 0
ТОО Никольское 153 0
ТОО Артюшанское 110 16
К-з Мекурина 109 108
АО Перлевское 101 588
ТОО Староведуговское 97 509
ТОО Старотойденское 94 0
ТОО Николаевское 80 15
К-з Победа 70 38
АО Меловатское 71 51
К-з Новосильский 60 180
К-з Юбилейный 62 0
ТОО Олнианское 50 276
К-з Родина 31 0
АО Серебрянское 22 174
ТОО Луч 23 67
АО Ведуга 21 41

проведем группировку предприятий по величине прибыли, образовав 5 групп:

Рассчитаем величину интервала:

Построим вариационный ряд

Таблица 3.2

Распределение хозяйств по стоимость внесенных удобрений на 1 га, тыс. руб.

Группы хозяйств Число хозяйств, f Удельный вес хозяйств, %
Начало интервала Конец интервала
0 117,6 18 72
117,6 235,2 2 8
235,2 352,8 2 8
352,8 470,4 1 4
470,4 588 2 8
Итого 25 100

По сгруппированным данным определим среднюю, показатели вариации, моду и медиану

Определим середины интервалов в группах хозяйств

Таблица 3.3

Середины интервалов в группах хозяйств

стоимость внесенных удобрений на 1 га., тыс. руб.

(середина интервала)

Число хозяйств, f Удельный вес хозяйств, %
58,8 18 72
176,4 2 8
294 2 8
411,6 1 4
529,2 2 8
Итого 25 100

Средняя показателя определяется в соответствии с выражением:

 тыс. руб.

Анализ вариации прибыли проведем, рассчитав показатели вариации:

1. Размах вариации:  тыс. руб.

2. Среднее линейное отклонение:

 тыс. руб.

3. Дисперсия:

4. СКО:  тыс. руб.

5. Коэффициент вариации:

Исходные данные для расчета моды и медианы:

1. Модальный интервал 0-117,6 тыс. руб., т.к. его частота=18 максимальна.

2. Медиальный интервал выберем, составив таблицу накапливаемых частот:


Таблица 3.4

Таблица накапливаемых частот

Группы хозяйств Число хозяйств, f Накопленная частота
Начало интервала Конец интервала
0 117,6 18 18
117,6 235,2 2 20
235,2 352,8 2 22
352,8 470,4 1 23
470,4 588 2 25
Итого 25

Т.к. половина частот 15, медиальный интервал – 0-117,6 тыс. руб.

Тогда мода:

 тыс. руб.

Медиана:

 тыс. руб.

Вывод: Распределение хозяйств по стоимости внесенных удобрений носит неравномерный характер и несимметричный характер, т.к. мода, медиана и среднее значение не совпадают.


4.Корреляционно-регрессионный анализ

4.1. Сущность и основные условия применения корреляционного анализа

В соответствии с сущностью корреляционной связи ее изучение имеет две цели:

1) измерение параметров уравнения, выражающего связь средних значений зависимой переменной со значениями независимой переменной (зависимость средних величин результативного признака от значений одного или нескольких факторных признаков);

2) измерение тесноты связи двух (или большего числа) признаков между собой.

Вторая задача специфична для статистических связей, а первая разработана для функциональных связей и является общей. Основным методом решения задачи нахождения параметров уравнения связи является метод наименьших квадратов (МНК), разработанный К. Ф. Гауссом (1777-1855). Он состоит в минимизации суммы квадратов отклонений фактически измеренных значений зависимой переменной у от ее значений, вычисленных по уравнению связи с факторным признаком (многими признаками) х.

Для измерения тесноты связи применяется несколько показателей. При парной связи теснота связи измеряется прежде всего корреляционным отношением, которое обозначается греческой буквой η. Квадрат корреляционного отношения - это отношение межгрупповой дисперсии результативного признака, которая выражает влияние различий группировочного факторного признака на среднюю величину результативного признака, к общей дисперсии результативного признака, выражающей влияние на него всех причин и условий. Квадрат корреляционного отношения называется коэффициентом детерминации:

                                                       (1)

где k - число групп по факторному признаку;

N — число единиц совокупности;

уi — индивидуальные значения результативного признака;

i - его средние групповые значения;

 - его общее среднее значение;

fi - частота в j-й группе.

Формула (1) применяется при расчете показателя тесноты связи по аналитической группировке. При вычислении корреляционного отношения по уравнению связи (уравнению парной или множественной регрессии) применяется формула (2):

                                                         (2)

где - индивидуальные значения у по уравнению связи.

Сумма квадратов в числителе - это объясненная связью с фактором х (факторами) дисперсия результативного признака у. Она вычисляется по индивидуальным данным, полученным для каждой единицы совокупности на основе уравнения регрессии.

Если уравнение выбрано неверно или сделана ошибка при расчете его параметров, то сумма квадратов в числителе может оказаться большей, чем в знаменателе, и отношение утратит тот смысл, который оно должно иметь, а именно какова доля общей вариации результативного признака, объясняемая на основе выбранного уравнения связи его с факторным признаком (признаками). Чтобы избежать ошибочного результата, лучше вычислять корреляционное отношение по другой формуле (3), не столь наглядно выявляющей сущность показателя, но зато полностью гарантирующей от возможного искажения:

                                                  (3)

В числителе формулы (3) стоит сумма квадратов отклонений фактических значений признака у от его индивидуальных расчетных значений, т.е. доля вариации этого признака, не объясняемая за счет входящих в уравнение связи признаков-факторов. Эта сумма не может стать равной нулю, если связь не является функциональной. При неверной формуле уравнения связи или ошибке в расчетах возрастают расхождения фактических и расчетных значений, и корреляционное отношение снижается, как логически и должно быть.

В основе перехода от формулы (2) к формуле (3) лежит известное правило разложения сумм квадратов отклонений при группировке совокупности:

Dобщ=Dмежгр+Dвнутригр

Согласно этому правилу можно вместо межгрупповой (факторной) дисперсии использовать разность:

Dобщ - Dвнутригр

что дает:

                                             (4)

При расчете η не по группировке, а по уравнению корреляционной связи (уравнению регрессии) мы используем формулу (3). В этом случае правило разложения суммы квадратов отклонений результативного признака записывается как

Dобщ=Dобъясн уравн регр+Dост

Важнейшее положение, которое следует теперь усвоить любому, желающему правильно применять метод корреляционно-регрессионного анализа, состоит в интерпретации формул (2) и (3). Это положение гласит:

Уравнение корреляционной связи измеряет зависимость между вариацией результативного признака и вариацией факторного признака (признаков). Меры тесноты связи измеряют долю вариации результативного признака, которая связана корреляг/ионно с вари-ciifiieu факторного признака (признаков).

Интерпретировать корреляционные показатели строго следует лишь в терминах вариации (различий в пространстве) отклонений от средней величины. Если же задача исследования состоит в измерении связи не между вариацией двух признаков в совокупности, а между изменениями признаков объекта во времени, то метод корреляционно-регрессионного анализа требует значительного изменения.

Из вышеприведенного положения об интерпретации показателей корреляции следует, что нельзя трактовать корреляцию признаков как связь их уровней. Это ясно хотя бы из следующего примера. Если бы все крестьяне области внесли под картофель одинаковую дозу удобрений, то вариация этой дозы была бы равна нулю, а следовательно, она абсолютно не могла бы влиять на вариацию урожайности картофеля. Параметры корреляции дозы удобрений с урожайностью будут тогда строго равны нулю. Но ведь и в этом случае уровень урожайности зависел бы от дозы удобрений - он был бы выше, чем без удобрений.

Итак, строго говоря, метод корреляционно-регрессионного анализа не может объяснить роли факторных признаков в создании результативного признака. Это очень серьезное ограничение метода, о котором не следует забывать.

Следующий общий вопрос - это вопрос о «чистоте» измерения влияния каждого отдельного факторного признака. Группировка совокупности по одному факторному признаку может отразить влияние именно данного фактора на результативный признак при условии, что все другие факторы не связаны с изучаемым, а случайные отклонения и ошибки взаимопогасились в большой совокупности. Если же изучаемый фактор связан с другими факторами, влияющими на результативный признак, будет получена не «чистая» характеристика влияния только одного фактора, а сложный комплекс, состоящий как из непосредственного влияния фактора, так и из его косвенных влияний, через его связь с другими факторами и их влияние на результативный признак. Данное положение полностью относится и к парной корреляционной связи.

Однако коренное отличие метода корреляционно-регрессионного анализа от аналитической группировки состоит в том, что корреляционно-регрессионный анализ позволяет разделить влияние комплекса факторных признаков, анализировать различные стороны сложной системы взаимосвязей. Если метод комбинированной аналитической группировки, как правило, не дает возможность анализировать более 3 факторов, то корреляционный метод при объеме совокупности около ста единиц позволяет вести анализ системы с 8-10 факторами и разделить их влияние.

Наконец, развивающиеся на базе корреляционно-регрессионного анализа многомерные методы (метод главных компонент, факторный анализ) позволяют синтезировать влияние признаков (первичных факторов), выделяя из них непосредственно не учитываемые глубинные факторы (компоненты). Например, изучая корреляцию ряда признаков интенсификации сельскохозяйственного производства, таких, как фондообеспеченность, затраты труда на единицу Площади, энергообеспеченность, внесение удобрений на единицу площади, плотность поголовья скота, можно синтезировать общую часть их влияния на уровень продукции с единицы площади или на производительность труда, получив обобщенный фактор «интенсификация производства», непосредственно не измеримый, не отражаемый единым показателем.

Правильное применение и интерпретация результатов корреляционно-регрессионного анализа возможны лишь при понимании всех специфических черт, достоинств и ограничений метода.

Необходимо сказать и о других задачах применения корреляционно-регрессионного метода, имеющих не формально математический, а содержательный характер.

1. Задача выделения важнейших факторов, влияющих на результативный признак (т.е. на вариацию его значений в совокупности). Эта задача решается в основном на базе мер тесноты связи факторов с результативным признаком.

2. Задача оценки хозяйственной деятельности по эффективности использования имеющихся факторов производства. Эта задача решается путем расчета для каждой единицы совокупности тех величин результативного признака, которые были бы получены при средней по совокупности эффективности использования факторов и сравнения их с фактическими результатами производства,

3. Задача прогнозирования возможных значений результативного признака при задаваемых значениях факторных признаков.

Такая задача решается путем подстановки ожидаемых, или планируемых, или возможных значений факторных признаков в уравнение связи и вычисления ожидаемых значений результативного признака.

Приходится решать и обратную задачу: вычисление необходимых значений факторных признаков для обеспечения планового или желаемого значения результативного признака в среднем по совокупности. Эта задача обычно не имеет единственного решения в рамках данного метода и должна дополняться постановкой и решением оптимизационной задачи на нахождение наилучшего из возможных вариантов ее решения (например, варианта, позволяющего достичь требуемого результата с минимальными затратами).

4. Задача подготовки данных, необходимых в качестве исходных для решения оптимизационных задач. Например, для нахождения оптимальной структуры производства в районе на перспективу исходная информация должна включать показатели производительности на предприятиях разных отраслей и форм собственности. В свою очередь, эти показатели могут быть получены на основе корреляционно-регрессионной модели либо на основании тренда динамического ряда (а тренд - это тоже уравнение регрессии).

При решении каждой из названных задач нужно учитывать особенности и ограничения корреляционно-регрессионного метода. Всякий раз необходимо специально обосновать возможность причинной интерпретации уравнения как объясняющего связь между вариацией фактора и результата. Трудно обеспечить раздельную оценку влияния каждого из факторов. В этом отношении корреляционные методы глубоко противоречивы. С одной стороны, их идеал - измерение чистого влияния каждого фактора. С другой стороны, такое измерение возможно при отсутствии связи между факторами и случайной вариации признаков. А тогда связь является функциональной, и корреляционные методы анализа излишни. В реальных системах связь всегда имеет статистический характер, и тогда идеал методов корреляции становится недостижимым. Но это не значит, что эти методы не нужны.

Данное противоречие означает попросту недостижимость абсолютной истины в познании реальных связей. Приближенный характер любых результатов корреляционно-регрессионного анализа не является поводом для отрицания их полезности. Всякая научная истина относительна. Забыть об этом и абсолютизировать параметры регрессионных уравнений, меры корреляции было бы ошибкой, так же как и отказаться от использования этих мер.

Поскольку корреляционная связь является статистической, первым условием возможности ее изучения является общее условие всякого статистического исследования: наличие данных по достаточно большой совокупности явлений. По отдельным явлениям можно получить совершенно превратное представление о связи признаков, ибо в каждом отдельном явлении значения признаков кроме закономерной составляющей имеют случайное отклонение (вариацию). Например, сравнивая два хозяйства, одно из которых имеет лучшее качество почв, по уровню урожайности, можно обнаружить, что урожайность выше в хозяйстве с худшими почвами. Ведь урожайность зависит от сотен факторов и при том же самом качестве почв может быть и выше, и ниже. Но если сравнивать большое число хозяйств с лучшими почвами и большое число - с худшими, то средняя урожайность в первой группе окажется выше и станет возможным измерить достаточно точно параметры корреляционной связи.

Какое именно число явлений достаточно для анализа корреляционной и вообще статистической связи, зависит от цели анализа, требуемой точности и надежности параметров связи, от числа факторов, корреляция с которыми изучается. Обычно считают, что число наблюдений должно быть не менее чем в 5-6, а лучше - не менее чем в 10 раз больше числа факторов. Еще лучше, если число наблюдений в несколько десятков или в сотни раз больше числа факторов, тогда закон больших чисел, действуя в полную силу, обеспечивает эффективное взаимопогашение случайных отклонений от закономерного характера связи признаков.

Вторым условием закономерного проявления корреляционной связи служит условие, обеспечивающее надежное выражение закономерности в средней величине. Кроме уже указанного большого числа единиц совокупности для этого необходима достаточная качественная однородность совокупности. Нарушение этого условия может извратить параметры корреляции. Например, в массе зерновых хозяйств уровень продукции с гектара растет по мере концентрации площадей, т.е. он выше в крупных хозяйствах. В массе овощных и овоще-молочных хозяйств (пригородный тип) наблюдается та же прямая связь уровня продукции с размером хозяйства. Но если соединить в общую неоднородную совокупность те и другие хозяйства, то связь уровня продукции с размером площади пашни (или посевной площади) получится обратной. Причина в том, что овощные и овоще-молочные хозяйства, имея меньшую площадь, чем зерновые, производят больше продукции с гектара ввиду большей интенсивности производства в данных отраслях, чем в производстве зерна.

Иногда как условие корреляционного анализа выдвигают необходимость подчинения распределения совокупности по результативному и факторным признакам нормальному закону распределения вероятностей. Это условие связано с применением метода наименьших квадратов при расчете параметров корреляции: только при нормальном распределении метод наименьших квадратов дает оценку параметров, отвечающую принципам максимального правдоподобия. На практике эта предпосылка чаще всего выполняется приближенно, но и тогда метод наименьших квадратов дает неплохие результаты.

Однако при значительном отклонении распределений признаков от нормального закона нельзя оценивать надежность выборочного коэффициента корреляции, используя параметры нормального распределения вероятностей или распределения Стьюдента.

Еще одним спорным вопросом является допустимость применения корреляционного анализа к функционально связанным признакам. Можно ли, например, построить уравнение корреляционной зависимости размеров выручки от продажи картофеля, от объема продажи и цены? Ведь произведение объема продажи и цены равно выручке в каждом отдельном случае. Как правило, к таким жестко Детерминированным связям применяют только индексный метод анализа. Однако на этот вопрос можно взглянуть и с другой точки зрения. При индексном анализе выручки предполагается, что количество проданного картофеля и его цена независимы друг от друга, потому-то и допустима абстракция от изменения одного фактора при измерении влияния другого, как это принято в индексном методе. В реальности количество и цена не являются вполне независимыми друг от друга.

Корреляционно-регрессионный анализ учитывает межфакторные связи, следовательно, дает нам более полное измерение роли каждого фактора: прямое, непосредственное его влияние на результативный признак; косвенное влияние фактора через его влияние на другие факторы; влияние всех факторов на результативный признак. Если связь между факторами несущественна, индексным анализом можно ограничиться. В противном случае его полезно дополнить корреляционно-регрессионным измерением влияния факторов, даже если они функционально связаны с результативным признаком.

4.2. Построение однофакторной корреляционной модели зависимости урожайности (У) от фактора (Х- внесение органических удобрений на 1 га)

В качестве предмета исследования в этом разделе выберем зависимость урожайности (У) от фактора (Х- внесение органических удобрений на 1 га).

Таблица 4.1

Исходные данные

Наименование хозяйств Стоимость внесенных удобрений на 1 га Урожайность, ц/га
ТОО Рассвет 104 276
К-з Дерябинский 16 230
ТОО Левошевское 36 200
ТОО им. Кирова 0 122
АО Стандницкое 373 197
К-з Хлебородный 1 169
АО Землянское 286 169
ТОО Искра 112 149
ТОО Красноголовское 0 152
ТОО Никольское 0 153
ТОО Артюшанское 16 110
К-з Мекурина 108 109
АО Перлевское 588 101
ТОО Староведуговское 509 97
ТОО Старотойденское 0 94
ТОО Николаевское 15 80
К-з Победа 38 70
АО Меловатское 51 71
К-з Новосильский 180 60
К-з Юбилейный 0 62
ТОО Олнианское 276 50
К-з Родина 0 31
АО Серебрянское 174 22
ТОО Луч 67 23
АО Ведуга 41 21

Постулируем прямолинейную форму зависимости между исследуемыми показателями.

Составим вспомогательную таблицу:

Таблица 4.1

Вспомогательная таблица расчетных показателей

Наименование хозяйств x y

x2

xy

y2

ТОО Рассвет 104 276 10816 28704 76176
К-з Дерябинский 16 230 256 3680 52900
ТОО Левошевское 36 200 1296 7200 40000
ТОО им. Кирова 0 122 0 0 14884
АО Стандницкое 373 197 139129 73481 38809
К-з Хлебородный 1 169 1 169 28561
АО Землянское 286 169 81796 48334 28561
ТОО Искра 112 149 12544 16688 22201
ТОО Красноголовское 0 152 0 0 23104
ТОО Никольское 0 153 0 0 23409
ТОО Артюшанское 16 110 256 1760 12100
К-з Мекурина 108 109 11664 11772 11881
АО Перлевское 588 101 345744 59388 10201
ТОО Староведуговское 509 97 259081 49373 9409
ТОО Старотойденское 0 94 0 0 8836
ТОО Николаевское 15 80 225 1200 6400
К-з Победа 38 70 1444 2660 4900
АО Меловатское 51 71 2601 3621 5041
К-з Новосильский 180 60 32400 10800 3600
К-з Юбилейный 0 62 0 0 3844
ТОО Олнианское 276 50 76176 13800 2500
К-з Родина 0 31 0 0 961
АО Серебрянское 174 22 30276 3828 484
ТОО Луч 67 23 4489 1541 529
АО Ведуга 41 21 1681 861 441
Сумма 2991 2818 1011875 338860 429732

Определим параметры уравнения регрессии:

Уравнение регрессии:

y=a0+a1*x

y=112,4-0,005*x.

Теснота связи:

Таким образом, связь между урожайностью и стоимостью внесенных удобрений в хозяйствах района отсутствует.

Видимо урожайность определяется другими факторами.

Выводы и предложения

В ходе решения задач курсовой работы получены следующие результаты:

Урожай и урожайность важнейшие результативные показатели растениеводства и сельскохозяйственного производства в целом. Уровень урожайности отражает воздействие экономических и приходных условий, в которых осуществляется сельскохозяйственное производство, и качество организационно-хозяйственной деятельности каждого предприятия.

Урожай характеризует общий объем производства продукции данной культуры, а урожайность продуктивность этой культуры в конкретных условиях ее возделывания.

Динамика валового сбора сахарной свеклы характеризуется общим падением на 20,3% за исследуемый период. При этом как цепные так и базисные показатели темпов прироста имеют преимущественно отрицательное значение, что позволяет характеризовать динамику как общее падение производства сахарной свеклы.

Урожайность сахарной свеклы имеет также тенденцию к падению, однако не настолько большую как валовой сбор и составляет за исследуемый период лишь 6,8%.

С помощью методов выравнивания выявлена общая тенденция падения урожайности сахарной свеклы за исследуемый период

Динамика урожайности сахарной свеклы за исследуемый период носит устойчивую тенденцию к снижению, при этом локальная колебимость признака, имеющая место в 1995, 1998 и 1999 годах не оказала существенного влияния на общие результаты выравнивания, а значит, является статистически малозначимой.

В статистике под индексом понимается относительный показатель который выражает соотношение величин какого-либо явления во времени, в пространстве или дает сравнение фактических данных с любым эталоном (план, прогноз, норматив и т.д.).

Все экономические индексы можно классифицировать по следующим признакам:

•        степень охвата явления;

•        база сравнения;

•        вид весов (соизмерителя);

•        форма построения;

•        характер объекта исследования:

•        объект исследования;

•        состав явления;

•        период исчисления.

С помощью индексного метода выявлено, что снижение средней урожайности произошло за счет уменьшения урожайности на 49,111 ц/га или на 27,33%, а за счет фактора улучшения структуры посевных площадей средняя урожайность сахарной свеклы увеличилась на 3,855 ц/га или на 2,19%.

На объем валового сбора отрицательно повлияли уменьшение урожайности сахарной свеклы в отдельных хозяйствах и уменьшение размера посевных площадей, положительно повлияло улучшение структуры посевных площадей. В результате валовой сбор сахарной свеклы в отчетном году по сравнению с базисным уменьшился на 301583 ц или на 27,17%.

Группировка — это распределение единиц по группам в соответствии со следующим принципом: различия между единицами, отнесенными к одной группе, должны быть меньше, чем между единицами, отнесенными к разным группам.

Различия в целевом назначении группировки выражаются в существующей в отечественной статистике классификации группировок: типологические, структурные, аналитические.

Распределение хозяйств по стоимости внесенных удобрений носит неравномерный характер и несимметричный характер, т.к. мода, медиана и среднее значение не совпадают.

Корреляционно-регрессионный анализ учитывает межфакторные связи, следовательно, дает нам более полное измерение роли каждого фактора: прямое, непосредственное его влияние на результативный признак; косвенное влияние фактора через его влияние на другие факторы; влияние всех факторов на результативный признак. Если связь между факторами несущественна, индексным анализом можно ограничиться. В противном случае его полезно дополнить корреляционно-регрессионным измерением влияния факторов, даже если они функционально связаны с результативным признаком.

С помощью корреляционно-регрессионного исследования выявлено, что связь между урожайностью и стоимостью внесенных удобрений в хозяйствах района отсутствует. Следовательно, урожайность определяется другими факторами.


Список использованной литературы

1.         Крастинь О. П. Разработка и интерпретация моделей корреляционных связей в экономике. - Рига: Зинатне, 2003.

2.         Елисеева И.И. Общая теория статистики. М. Финансы и статистика. 2004.

3.         Адамов В.К. Факторный индексный анализ (Методология и проблемы). ML: Статистика. 2003. 200 с.

4.         Альбом наглядных пособий по общей теории статистики: Учеб. пособие. М.: Финансы и статистика, 2005. 80 с.

5.         Вучков И. и др. Прикладной линейный регрессионный анализ / Пер. с болг. И. Вучков, Л. Бояджиева, Е. Солжов. М: Финансы и статистика, 2003. 239-е.

6.         Долгушевский Ф.Г., Христич А.Г. Сельскохозяйственная статистика с основами экономической статистики. М.: Статистика, 2006.

7.         Емельянов A.M. Экономика сельского хозяйства М.: Экономика. 2002.

8.         Ефимова М.Р., Рябцев В.М. Общая теория статистики: Учебник. М.: Финансы и статистика, 2004. 303 с.

9.         Плошка Б.Г. Группировка и система статистических показателей. М.: Статистка, 2003. 176 с.

10.      Рафиков М.М. Экономика, организация и планирование сельскохозяйственного производства. ML: Экономика, 2002.

11.      Сергеев С.С. Сельскохозяйственная статистика с основами экономической статистики. М.: Финансы и статистика, 2003.

12.      Статистическое моделирование и прогнозирование / Под ред. А.Г. Гранберга. М.: Финансы и статистика, 2006. 383 с.

13.           Баканов М.И., Шеремет А.Д. Теория анализа хозяйственной деятельности Учебник, 3-е переработанное и дополненное издание: М.: Финансы и статистика. 2004

14.           Кравченко Л.И. Анализ финансового состояния предприятия.М.:ЮНИТИ. 2006

15.           Савицкая Г.В. Теория анализа хозяйственной деятельности М: ИСЗ, 2005.

16.           Савицкая Г.В.Анализ хозяйственной деятельности промышленного предприятия. М.: ИСЗ, 2005.

17.           Теория экономического анализа (под ред. Шеремета А.Д. М.: Прогресс. 2006.

18.           Шеремет А.Д. Методика финансового анализа предприятияМ.: ИПО МП, 2006.

19.           Стражев В.Н. Оперативное управление предприятием, проблемы учета и анализа Мн.: Наука и техника,2003.

20.           Панков Д.А. Современные методы анализа финансового положения М.: ООО Профит.2004.

21.           Муравьев А.И. Теория экономического анализа: проблемы и решения. М: Финансы и статистика,2003.

22.           Маркин Ю.П. Анализ внутрихозяйственных резервов. М: Финансы и статистика,2005.

23.           Анализ финансово-экономической деятельности предприятия: Учеб. Пособие для ВУЗов/под ред. Любушина Н.П. –М.: ИНИТИ – ДАНА, 2005. 471с.

24.           Экономика предприятия Под. ред.проф. В.Я. Горфинкеля, М.,2006.


Страницы: 1, 2


© 2010 Собрание рефератов