Рефераты

Учебное пособие: Основные принципы организации и функционирования производства на машиностроительном предприятии

а)      рабочий обходит станки по одному и тому же маршруту, обслуживая их по мере необходимости;

б)      на каждом станке значения свободного машинного времени и времени занятости рабочего на одном станке имеют неизменную, стабильную величину;

в)      свободное машинное время и время занятости рабочего на каждом станке подвержены большим колебаниям и имеют неопределенное значение.

9       Рабочему-многостаночнику следует подбирать для обслуживания станки, имеющие:

а)      существенно различное значение времени занятости рабочего на одном станке и свободного машинного времени;

б)      примерно одинаковое значение суммы свободного машинного времени и времени занятости рабочего на одном станке;

в)      возрастающее значение свободного машинного времени;

г)       убывающее значение свободного машинного времени.

10     В каком случае рабочему-многостаночнику потребуется подменный рабочий при обслуживании станков-дублеров:

а)      когда значения свободного машинного времени и времени занятости рабочего на одном станке не равны и не кратны друг другу;

б)      когда значения свободного машинного времени и времени занятости рабочего на одном станке максимально отличаются друг от друга;

в)      когда значения свободного машинного времени и времени занятости рабочего на одном станке равны или кратны друг другу;

г)       когда свободное машинное время существенно меньше времени занятости рабочего на одном станке.


3 ПОТОЧНЫЕ ФОРМЫ ОРГАНИЗАЦИИ ПРОИЗВОДСТВА

3.1 ОБЩАЯ КЛАССИФИКАЦИЯ ПОТОЧНЫХ ЛИНИЙ

Поточное производство является высокоэффективным методом организации производственного процесса. В условиях потока производственный процесс осуществляется в максимальном соответствии с принципами его рациональной организации – пропорциональности, ритмичности и прямоточности.

Для поточного производства характерны следующие основные признаки:

1)      рабочие места располагаются по ходу технологического процесса;

2)      технологический процесс изготовления изделия разбивается на операции и на каждом рабочем месте выполняется одна – три родственные операции;

3)      предметы передаются с операции на операцию поштучно или небольшими транспортными партиями в соответствии с заданным тактом работы поточной линии, благодаря чему достигается высокая производительность линии.

Впервые поточное производство было организовано Г. Фордом в начале XX в. при изготовлении автомобилей. После Октябрьской революции поточные методы получили широкое распространение в промышленности. В годы Великой Отечественной войны они сыграли огромную роль в бесперебойном снабжении фронта боеприпасами и военной техникой. В настоящее время поточные методы распространены в пищевой, автомобильной, электронной и других отраслях промышленности. Основным звеном поточного производства является поточная линия. Упрощенная классификация поточных линий (ПЛ) приведена на рис. 3.1.

Однопредметной называется ПЛ, на которой обрабатывается или собирается предмет одного типоразмера в течение длительного периода времени. Однопредметные линии применяются при устойчивом выпуске изделий в больших количествах, т.е. в массовом производстве.

Многопредметной называется ПЛ, за которой закреплено изготовление нескольких типоразмеров предметов, сходных по конструкции и технологии обработки или сборки. Такие линии характерны для серийного производства, когда объем выпуска предметов одного типоразмера является недостаточным для эффективной загрузки рабочих мест на линии.

Непрерывно-поточной является линия, на которой обрабатываемые или собираемые предметы перемещаются по всем операциям линии непрерывно, т.е. без межоперационного простоя. Условием непрерывной работы ПЛ является равная производительность на всех операциях линии. Для создания такого условия необходимо, чтобы продолжительность каждой операции на линии была равна или кратна единому такту работы линии.

Прямоточной или прерывной, называется ПЛ, операции которой не равны и не кратны единому такту работы линии и, следовательно, не могут быть выравнены по производительности. Между операциями образуются оборотные заделы (запасы) обрабатываемых предметов, вследствие чего непрерывность процесса производства нарушается. Прямоточные линии применяются при обработке трудоемких деталей на разнотипном оборудовании, когда нормы времени операций невозможно синхронизировать. Эти ПЛ относят к неконвейерному типу, т.е. в этом случае не используют транспортные средства непрерывного действия с механическим приводом, называемыми конвейерами. На прямоточных линиях используют разнообразные транспортные средства – краны, элетротележки, автопогрузчики и т.д.

Рабочий конвейер – на такой ПЛ – все рабочие места связаны конвейером. В данном случае конвейер служит еще и местом выполнения операций, которые осуществляются на его несущей части. Типичным примером таких ПЛ являются сборочные конвейеры.

Распределительный конвейер – это ПЛ на которой конвейер служит средством доставки предметов к рабочим местам или оборудованию, расположенному вдоль конвейера. Предметы снимаются с конвейера, обрабатываются на оборудовании, а затем возвращаются на него.

В зависимости от характера перемещения различают конвейеры с непрерывным и пульсирующим движением. На конвейере с непрерывным движением несущая его часть движется непрерывно с установленной скоростью. На конвейере с пульсирующим движением во время обработки (сборки) предметов несущая часть конвейера находится в неподвижном состоянии в течение времени равном такту линии, а затем конвейер приводится в движение и предмет перемещается в следующую зону операции. Пульсирующее и непрерывное движение характерно как для рабочего, так и распределительного конвейеров.

На переменно-поточной линии различные предметы обрабатываются или собираются последовательно чередующимися партиями. После обработки или сборки партии одних предметов проводится переналадка оборудования и запускается в производство следующая партия.

На групповой ПЛ обрабатывается или собирается группа родственных в технологическом отношении предметов без переналадки оборудования. Для этого каждое рабочее место должно быть оснащено групповыми приспособлениями, необходимыми для обработки изделий, закрепленных за линией.

3.2 ОСОБЕННОСТИ ОРГАНИЗАЦИИ НЕПРЕРЫВНО-ПОТОЧНЫХ ЛИНИЙ

Основные параметры непрерывно-поточных линий: такт (r), количество рабочих мест на операции (ci), коэффициент загрузки рабочих мест (Kзi). Эти параметры рассчитываются в следующей последовательности. Сначала рассчитывается такт поточной линии

r = Fэф /N ,          (3.1)

где Fэф – эффективный фонд времени работы линии за определенный период (месяц, сутки, смену); N производственная программа за этот же период.

Такт показывает тот интервал времени, через который на конвейер запускается очередной предмет, либо выпускается с конвейера уже изготовленное или собранное изделие. Такт конвейера принято измерять в минутах.

Далее определяется расчетное количество рабочих мест на каждой операции

cрi =ti /r ,   (3.2)

где ti продолжительность i-й операции, мин.

Величина cpi округляется до целого числа и устанавливается принятое число рабочих мест ci. После чего рассчитывается средний коэффициент загрузки рабочих мест на i-й операции по формуле

Kзi = (срi /ср )100 % .

При проектировании конвейеров перегрузка рабочих мест не должна превышать 10 – 12 %, т.е. Kзi ? 112 %. Такая перегрузка рабочих снимается в процессе отладки поточной линии, за счет совершенствования навыков и опыта работы на конвейере. При большей перегрузке рабочих, организация непрерывно-поточной линии невозможна и следует рассмотреть вопрос о проектировании иной ПЛ – прямоточной, на которой не требуется осуществлять точной синхронизации времени выполнения операций.

Для непрерывно движущегося конвейера рассчитывается дополнительный параметр – скорость движения конвейера

v = l / r,

где l – расстояние между осями двух смежных изделий, находящихся на конвейере, называемое шагом конвейера, м.

Скорость движения конвейера не должна быть слишком большой, ее величина колеблется в пределах 0,1 4,0 м/мин.

Рабочий конвейер. Рассмотрим особенности организации рабочего конвейера на примере. Предположим, что изделие должно проходить сборку на трех операциях со следующими нормами времени t1 =

1,      t2      =

t3 = 2 мин. Такт поточной лини r = 1 мин; шаг конвейера l = 2 м. Нормы времени на операциях по продолжительности либо равны, либо кратны такту поточной линии. Следовательно, расчетное число рабочих мест (cpi) будет целым числом и коэффициент загрузки рабочих мест на каждой операции Kзi =

1,0. Очевидно, что принятое число рабочих мест на каждой операции будет следующим: c1 = 1, c2 = 3 И c3 = 2. Длина рабочей зоны i-й операции рассчитывается по формуле:

Длина зоны первой операции – L1 = 2 ? 1 = 2 м; второй – L2 = 2 ? 3 = 6 м; третьей – L3 = 2 ? 2 = 4 м. Изобразим эти зоны и рабочий конвейер на схеме (рис. 3.2).

Предположим, что конвейер – пульсирующий, т.е. в течение времени r = 1 мин он неподвижен, а затем быстро перемещается на расстояние l = 2 м. Поскольку на первой операции норма времени t1 = 1 мин, то рабочему 1.1 будет вполне достаточно времени на выполнение этой операции.

Рабочий 2.1 будет перемещаться вдоль второй рабочей зоны за тем изделием, которое лежит на конвейере. Очевидно, что рабочий 2.1 сделает во второй зоне три остановки по 1 мин каждая, т.е. он также сможет осуществить свою сборочную операцию продолжительностью t2 = 3. Дойдя до конца зоны второй операции, рабочий возвращается в ее начало. Рабочий 2.2 идет после рабочего 2.3 и перед рабочим 2.1. Каждый из них достигнув конца своей зоны, возвращается в ее начало, встречая новое изделие, входящее во вторую зону из зоны первой операции. Аналогичным образом осуществляют переходы и рабочие 3.1 и 3.2 в третьей зоне операции.

Если конвейер движется непрерывно, то его скорость должна быть равной v = l / r = 2 / 1 = 2 м/мин. Следовательно, первую зону операции длиной 2 м изделие будет проходить за 1 мин; вторую зону длиной 6 м – за 3 мин, а третью соответственно – за 2 мин. Каждый рабочий будет в течение определенного времени сопровождать изделие в своей зоне, одновременно осуществляя необходимую сборочную операцию.

Общая длина конвейера рассчитывается по формуле:

На операциях с нестабильным временем их выполнения и возможными задержками создается резервная зона, на длину которой увеличивается протяженность зоны Li . Длина резервной зоны должна быть либо равной, либо кратной шагу конвейера, благодаря чему время выполнения нестабильной операции может быть больше установленной нормы.

Распределительный конвейер. Воспользуемся исходными данными предыдущего примера для иллюстрации работы ПЛ со снятием изделий с конвейера. Схема распределительного конвейера с теми же параметрами, что и у рабочего конвейера, рассмотренного выше, приведена на рис. 3.3. Если на конвейере на отдельных операциях имеется по несколько рабочих мест, то необходимо обеспечить правильное чередование в обработке изделий на каждом рабочем месте. Для этой цели делается разметка конвейера на его ленту краской наносят числа, которые образуют период П распределительного конвейера.

Период распределительного конвейера равен наименьшему кратному из числа рабочих мест на каждой операции. В нашем примере П = 6. Действительно, шесть цифр - это самое малое число, которое без остатка может быть распределено между рабочими местами на любой операции ПЛ. За рабочим 1.1 следует закрепить шесть цифр, за каждым из рабочих 2.1, 2.2, 2.3 - по две цифры и за рабочими 3.1, 3.2 по три цифры (по три разметочных знака). Разметочные знаки периода необходимо распределять

Распределительный конвейер может быть как пульсирующим, так и с непрерывным движением. В любом случае, каждое следующее изделие подходит к рабочему через время, равное такту ПЛ. Если рабочий будет обрабатывать каждое изделие, которое подает ему конвейер, то норма времени у такого рабочего должна быть равна такту ПЛ, если рабочий будет брать с конвейера каждое второе изделие, то его норма времени должна быть равна двум тактам ПЛ и т.д. В табл. 3.1. показано, каким образом следует закреплять разметочные знаки периода распределительного конвейера за рабочими, чтобы время обработки детали на каждом рабочем месте соответствовало бы установленной норме.

Например, за рабочим 2.1 закреплены знаки первый и четвертый. Когда с рабочим поравняется первый разметочный знак, то к этому моменту должна закончиться обработка предыдущего изделия. Рабочий должен положить на первый разметочный знак обработанное изделие и затем с этого же знака взять очередное изделие, т.е. заменить необработанное изделие на обработанное. Четвертый разметочный знак подойдет к рабочему через интервал времени, равный трем тактам ПЛ, в нашем примере это – 3 мин, что числено равно t2 = 3 мин, которые отводятся рабочему на выполнение второй операции. Каждый рабочий на третьей операции заменяет необработанное изделие на обработанное через два такта ПЛ, т.е. через 2 мин, что также соответствует t3 = 2 мин.

Период конвейера на общей длине ленты может повторяться несколько раз, но обязательно целое число раз. Удобны для работы следующие периоды 6, 12, 24 и 30. При больших периодах вводится дифференцированная разметка, при которой на конвейер наносится двойной комплект знаков, например окраска полей и нумерация. При этом часть рабочих пользуется одним комплектом знаков, а другая часть – другим.

3.3 ПРИМЕР ЗАКРЕПЛЕНИЯ НОМЕРОВ ПЕРИОДА РАСПРЕДЕЛИТЕЛЬНОГО КОНВЕЙЕРА ЗА РАБОЧИМИ

Номер рабочего на ПЛ Номера периода

1.1    1, 2, 3, 4, 5, 6

2.1    1, 4

2.2    2, 5

2.3    3, 6

3.1    1, 3, 5

3.2    2, 4, 6

Общая длина распределительного конвейера определяется из условий расположения оборудования и конструктивных особенностей транспортера. Станки могут быть расположены с одной или с двух сторон конвейера в линейном или шахматном порядке. На рис. 3.3 показано шахматное двустороннее расположение станков на поточной линии.

3.4 ОРГАНИЗАЦИЯ ПРЯМОТОЧНЫХ ПОТОЧНЫХ ЛИНИЙ

Прямоточные поточные линии применяются в тех случаях, когда при проектировании производственного процесса не удается достичь синхронности выполнения операций, поскольку их продолжительность не равна и не кратна такту ПЛ. Этапы расчета основных параметров прямоточной ПЛ следующие.

А) Определяется такт работы ПЛ по (3.1). Затем рассчитывается расчетное количество рабочих мест на каждой операции по (3.2). Расчетное число рабочих мест будет существенно отличаться от целого числа, так как норма времени на данной операции, как уже говорилось, не равна и не кратна такту поточной линии. Поэтому необходимо определить индивидуальные коэффициенты загрузки рабочих мест по следующему правилу. Для всех рабочих мест на операции, кроме последнего, коэффициент загрузки Kзi принимается равным 100 %. Загрузка последнего рабочего места рассчитывается по остаточному принципу. Например, расчетное количество рабочих мест получилось равным 2,4 следовательно, первые два рабочих места будут загружены на 100 %, а последнее, третье – на 40 %. Если бы расчетное число рабочих мест было бы равно 2,1, то в этом случае можно образовать только два рабочих места на операции, поскольку перегрузка рабочих величиной 5 % (K з i = 2,1 / 2 ? 100 % = 105 %) может быть снята в процессе отладки поточной линии за счет совершенствования навыков и опыта работы на ПЛ и, в конечном итоге, она будет на этих рабочих местах по 100 %. Перегрузка в 40 % требует организации дополнительного рабочего места именно с такой неполной загрузкой. Особенность прямоточной поточной линии в том, что станки с неполной загрузкой, расположенные на различных операциях ПЛ, передаются в обслуживание одному рабочему-многостаночнику так, чтобы его занятость была близка к 100 %. Это позволяет экономить на рабочей силе.

Тип поточной линии в процессе проектирования определяется по предельной перегрузке рабочих мест, приблизительно равной 10 - 12 %. Если перегрузка рабочих мест не более 12 %, на всех рабочих местах ПЛ, то можно организовать конвейер; если перегрузка достигает большей величины, то необходимо проектировать рабочие места с неполной загрузкой, вводить многостаночное обслуживание, а это уже иной тип поточной линии - прямоточная ПЛ.

Б) Выбирается период комплектования заделов на ПЛ. Период комплектования иначе называется ритмом работы R поточной линии. Он должен быть кратен продолжительности смены, например 60, 120, 240, 480 мин, что делается для целей удобства планирования заделов. В течение промежутка времени, равному R, на всех операциях поточной линии формируется выработка заданной величины, а между операциями, вследствие различной производительности оборудования, образуются запасы полуфабрикатов, называемые межоперационными оборотными заделами. На этом этапе строится план-график загрузки оборудования и рабочих на ПЛ. От вида этого графика будет зависеть величина межоперационных оборотных заделов и, в конечном итоге, объем незавершенного производства на ПЛ. На плане-графике показывают моменты переходов рабочих-многостаночников от станка к станку. Характерной особенностью прямоточных поточных линий является то, что на них количество рабочих меньше количества станков из-за наличия многостаночного обслуживания.

В) Рассчитывается изменение величины межоперационного оборотного задела по формуле:

Z=(Tci)/ti-(Tci +1)/ti+1 ,         (3.7)

где T - период времени, в течение которого на смежных операциях количество действующих станков остается неизменным; ti и ti +1 - нормы времени на смежных операциях; ci и ci +1 - число единиц оборудования, действующих на смежных операциях в течение периода времени T.

Величина задела между смежными операциями должна рассчитываться для каждого значения T, т.е. для каждого случая изменения его величины на протяжении периода комплектования.

На этом этапе строятся графики межоперационных оборотных заделов на ПЛ. Проиллюстрируем все этапы расчета параметров поточной линии на примере.

Пример. На участке обрабатывается 184 детали в сутки. Участок работает в две смены по 8 ч.

Нормы времени на обработку одной детали:

t 1 = 2,9, t2 = 2,3, t 3 = 6,2, t 4 = 4,21 мин. Рассчитать количество оборудования на операциях и численность рабочих на прямоточной линии. Составить план-график работы оборудования и рабочих, рассчитать эпюры оборотных заделов.

Решение. А) Определим такт работы прямоточной линии по (3.1): r = 480 ? 2 / 184 = 5,2 мин на одну деталь. Здесь 480 - продолжительность рабочей смены в мин. Далее рассчитаем количество рабочих мест (станков) на ПЛ по (3.2) и их индивидуальную загрузку. Все расчеты сведены в таблицу.

Определим численность рабочих на ПЛ исходя из трудоемкости производственной программы. Сменная программа выпуска 184 / 2 = 92 ед. в смену. Трудоемкость сменного задания: 92 (2,9 + 2,3 + 6,2 + 4,21) = 1436 мин. Численность рабочих 1436 / 480 = 3 человека. Итак, пять станков должно обслуживать три рабочих.

Б) Выбираем период комплектования задела на ПЛ равным 240 мин, или 0,5 от продолжительности рабочей смены. План-график загрузки оборудования и рабочих на ПЛ в течение периода комплектования R = 240 мин показан на рис. 3.4.

Если время выполнения операции разделить на норму времени на этой операции, то получим количество деталей, произведенных за период комплектования задела:

•        на первой операции 134 / 2,9 = 46 ед.;

•        на второй операции 106 / 2,3 = 46 ед.;

•        на третьей операции 286 / 6,2 = 46 ед.;

•        на четвертой операции 194 / 4,21 = 46 ед.

Таким образом, в течение рабочей смены будет изготовлено 46 ? 2 = 96 деталей, что и требуется по плану производства. Из рис. 3.4 видно, что рабочий 1 обслуживает станки 1.1 и 2.1; рабочий 2 работает на одном станке 3.1; рабочий 3 занят на станках 3.2 и 4.1. Таким образом, рабочие-многостаночники 1 и 3 за период комплектования задела проделывают по одному переходу от станка к станку, а за смену – по два перехода.

В) На рис. 3.5 изображены графики межоперационных оборотных заделов. Разберем процесс расчета и построения этих графиков, иначе называемых эпюрами.

Рассчитаем эпюру задела между первой и второй операциями в два приема. Выбираем период времени, в течение которого на смежных операциях состояния станков остаются неизменными: на первой операции – это один работающий станок, на второй операции – это один простаивающий станок. Очевидно, что в (3.7) T = 0,56 ? 240 мин:

AZ1-2 = (Tc 1) / t 1 - ( Tc 2) / t 2 = (0,56 • 240 • 1) / 2,9 - (0,56 • 240 • 0) / 2,3 = 46 ед.

На эпюре задел растет с нулевого значения до 46 ед. В течение следующего периода времени (T = 0,44 240 мин) на первой операции станок бездействует, а на второй функционирует

AZ'1-2 = (Tc 1) / t 1 - (Tc2) / t2 = (0,44 • 240 • 0) / 2,9 - (0,44 • 240 • 1) / 2,3 = -46 ед.

На эпюре задел убывает до нулевого значения.

Задел между второй и третьей операциями рассчитывается три приема: изменение задела в течение 0,56 • 240 мин; в течение (0,44 - 0,19) 240 = 0,25 • 240 мин и 0,19 • 240 мин:

AZ2-3 = (Tc2) / t2 - (Tc3) / t 3 = (0,56 • 240 • 0) / 2,3 - (0,56 • 240 • 1) / 6,2 = -22 ед.;

AZ'2-3 = (Tc2) / t2 - (Tc3) / t 3 = (0,25 • 240 • 1) / 2,3 - (0,25 • 240 • 1) / 6,2 = 17 ед.; AZ"2-3 = (Tc2) / t2 - (Tc 3) / t 3 = (0,19 • 240 • 1) / 2,3 - (0,19 • 240 2) / 6,2 = 5 ед.


В течение первой части периода комплектования (0,56 • 240 мин.) на второй операции станок простаивает, а на третьей работает один станок; во второй части периода на второй и на третьей операциях действует по одному станку; в третьей части периода на второй операции работает два станка, а на третьей операции - один станок. По (3.7) рассчитывается изменение оборотного задела, поэтому отрицательное значение AZ = -22 ед. в начале периода комплектования задела означает, что в начальный момент времени не хватает именно такого запаса деталей для начала третьей операции. Эпюра задела между второй и третьей операциями формируется таким образом: на начало периода комплектования к третьему станку подают 22 ед. деталей, прошедших обработку на втором станке; в течение первой части периода этот задел уменьшается до нуля (22 ед. первоначального запаса минус 22 ед. изготовленных на третьем станке); в течение второй части периода задел увеличивается до 17 ед.; в течение третьего периода к 17 ед. запаса добавляется еще 5 ед. и таким образом к концу периода комплектования задел становится равным 17 + 5 = 22 ед. Если эпюра построена правильно, то величина задела на начало и конец периода комплектования должны совпадать (см. рис. 3.5).

Между третьей и четвертой операциями расчет изменения задела и построение эпюры осуществляется аналогично, но с той разницей, что выделяют две части периода комплектования, в течение которых станки находятся в неизменных состояниях.

AZ3-4 = (Tc 3) / t 3 - (Tc4) / t 4 = (0,81 • 240 • 1) / 6,2 - (0,81 • 240 • 1) / 4,21 = -15 ед.;

AZ'3-4 = (Tc3) / t 3 - (Tc 4) / t 4 = (0,19 • 240 • 2) / 6,2 - (0,19 • 240 • 0) / 4,21 = 15 ед.

Из рис. 3.5 видно, что если в начальный момент времени к четвертому станку поместить 15 ед. деталей, то к окончанию периода комплектования этот задел самовоспроизведется и у четвертого станка по-прежнему будет 15 ед. деталей, прошедших обработку на третьем станке.

Величина оборотного задела, сложившаяся к концу периода его комплектования, называется переходящим заделом Zпер. Переходящий задел должен быть минимальным. В данном примере суммарный переходящий задел - 37 ед., следовательно, к концу рабочей смены эти полуфабрикаты нужно либо передать бригаде рабочих, работающих во вторую смену, либо обеспечить их хранение до следующего дня. Чем меньше переходящий задел, тем меньше затраты на эти вспомогательные операции.

Суммарный оборотный задел на поточной линии определяют сложением количества деталей, находящихся в заделе между операциями на данный момент времени. Например, к моменту времени 0,56 • 240 = 134 мин между первой и второй операциями в заделе находится 46 ед., между второй и третьей операциями - 0 ед., между третьей и четвертой - 5 ед. Суммарная величина задела: 46 + 0 + 5 = 51 ед. (см. рис. 3.5). Средняя величина задела, или, иначе, средняя величина незавершенного производства на поточной линии - Zср = 44 ед.

Характеристики прямоточной поточной линии, влияющие на эффективность ее работы. 1) Существует оптимальное значение периода комплектования задела на поточной линии. На рис. 3.6 показаны два варианта организации производства на поточной линии, отличающиеся только величиной R. Из рисунка видно, что чем больше период комплектования задела R, тем больше задел и тем меньшее количество переходов от станка к станку делает рабочий в течение смены. То есть при значительных периодах комплектования ухудшается оборачиваемость запасов, но уменьшаются потери рабочего времени у рабочего, осуществляющего переходы от станка к станку (рис. 3.6, а). При небольших значениях периода комплектования с одной стороны величина задела уменьшается и улучшаются показатели оборачиваемости запасов, а с другой - увеличивается количество переходов рабочего и, как следствие, возрастают потери объемов производства (рис. 3.6, б). Сопоставляя достоинства и недостатки большого и малого периодов комплектования, можно определить его оптимальную величину.

2) Если на смежных операциях работа станков осуществляется параллельно, то задел деталей между операциями будет минимальным, а численность рабочих – максимальна и, наоборот, при последовательной работе станков на смежных операциях задел деталей максимален, а численность рабочих – минимальна (рис. 3.7).

Задел деталей в этом случае не превышает 10 ед.

Таким образом, можно построить простейшую изокванту1 замещения оборотного задела (оборотного капитала) рабочими (трудом) при объемах производства 92 ед. продукции в смену (рис. 3.8).

В данном случае изокванта построена для максимальных значений величины задела. Аналогичная зависимость получилась бы и для средних величин задела. Из рис. 3.8 видно, что если детали дорогие, например из цветного металла, а рабочая сила дешевая, то целесообразно увеличить численность рабочих на ПЛ, планируя параллельную (одновременную) работу станков на смежных операциях, добиваясь тем самым снижения величины денежных средств, вложенных в оборотные заделы прямоточной поточной линии. И наоборот, при дорогой рабочей силе и малоценных деталях необходимо экономить рабочую силу, планируя последовательную работу станков на смежных операциях ПЛ, результатом чего будет увеличение более дешевого ресурса - оборотного капитала, а точнее его части - запасов незавершенного производства.

3) Существует простое правило минимизации переходящего задела на прямоточной поточной линии: если на плане-графике загрузки оборудования и рабочих линии работы станков располагать нисходящими ступенями слева направо и сверху вниз, то переходящий задел на ПЛ будет наименьшим. На рис. 3.4 линии работы станков на первой и второй операциях образуют ступень согласно данному правилу и на рис. 3.5 соответствующий переходящий задел имеет нулевое значение. Линии работы станков между третьей и четвертой операциями на рис. 3.4 образуют восходящую ступень и соответствующий переходящий задел на рис. 3.5 имеет значение 15 ед. Очевидно, что последовательность работы станков 3.2 и 4.1 (см. рис. 3.4) установлена нерационально. Начинать обработку деталей должен станок 3.2 на третьей операции, а заканчивать ее на четвертой операции - станок 4.1, тогда бы переходящий задел между этими операциями был бы меньше.

3.5 ОРГАНИЗАЦИЯ РАБОТЫ МНОГОПРЕДМЕТНЫХ ПОТОЧНЫХ ЛИНИЙ

Организация переменно-поточных линий. Исходным моментом для расчета параметров переменно-поточной линии является программа выпуска изделий различного наименования. Предположим, что за ПЛ закреплено несколько наименований изделий с месячными программами выпуска пj . Необходимо распределить эффективный месячный фонд времени Fэф работы ПЛ между изделиями различных наименований, т.е. установить период времени Fj , в течение которого будет полностью изготовлена партия изделий величиной пj . Распределение месячного фонда времени Fэф работы ПЛ осуществляется пропорционально трудоемкости изготовления изделий, закрепленных за ПЛ

Fj=(F эфтjйj(1-л))/у(тЛ)],       (3.8)

где трудоемкость обработки изделия с номером j по всем операциям /-го технологического процесса определяется по формуле

Частный такт обработки r отдельных видов изделия, например изделия с номером j, определяется по формуле

rj=Fj/„j.      (3.10)

Количество рабочих мест на /-й операции, требующееся для обработки всех изделий, закрепленных за ПЛ принимается равным максимальному значению сj , рассчитанному для всех изделий

ci = max(cji ) .

Пример. На переменно-поточной линии, работающей в две смены (21 рабочий день в месяц) собирают два изделия А и Б с месячными программами 2000 ед. и 965 ед. соответственно. Трудоемкость изготовления одного изделия А по операциям технологического процесса: tА 1 = 0,146, tА2 = 0,22, tА3 = 0,136 ч. Трудоемкость изготовления одного изделия Б по операциям технологического процесса: t Б 1 = 0,453, tБ 2 = 0,292, t Б 3 = 0,13 ч. Рассчитать частные такты, число рабочих мест на ПЛ. Временем на переналадку линии пренебречь.

Решение. Суммарная трудоемкость изготовления одного изделия А и одного изделия Б по всем операциям определяется по (3.9):

ТА = 0,146 + 0,22 + 0,136 = 0,502 ч; тБ = 0,453 + 0,292 + 0,13 = 0,875 ч.

Трудоемкость месячных программ

Изготовления изделий А и Б:

= 0,502 • 2000 = 1004 ч; тБлБ = 0,875 • 965 = 844,4 ч. Итого 1(ту щ) = = тАпА + тБпБ = 1004 + 844,4 = 1848,4 ч.

Время работы переменно-поточной линии при производстве изделия А и Б рассчитываем по (3,8):

FА = (336 • 1004) / 1848,4 = 182,5 ч или 182,5 / 8 = 22,8 рабочей смены;

FБ = (336 • 844,4) / 1848,4 = 153,5 ч или 153,5 / 8 = 19,2 рабочей смены,


где эффективный месячный фонд времени работы ПЛ - 21 • 2 • 8 = 336 ч. Частные такты работы переменно-поточной линии определяем по (3.10):

гА = 182,5 / 2000 = 5,5 мин; гБ = 153,5 / 965 = 9,5 мин. Число рабочих мест на /-й операции находим как частное от деления нормы времени на выполнение данной операции и частного такта работы ПЛ:

Изделие     Число рабочих мест на операции

Операция 1 Операция 2 Операция 3

А       cА1 = 0,146 / 5,5= 1,6 ? 2     cА2 = 0,22 / 5,5 = = 2,4 ? 3   cА3 = 0,136 /5,5 = 1,5 ? 2

Б       cБ1 = 0,453 / 9,5= 2,9 ? 3      cБ2 = 0,292 / 9,5

= 1,8 ? 2     cБ3 = 0,13 / 9,5= 0,8 ? 1

ci = max(cji)         3       3       2

Из таблицы видно, что переменно-поточная линия будет работать в режиме прямоточной ПЛ. Первые 22,8 смены будет изготавливаться изделие А с тактом 5,5 мин, следующие 19,2 смены изделие Б с тактом 9,5 мин. Суммарное количество станков на ПЛ: 3 + 3 + 2 = 8. При производстве изделия А на первой операции будет задействовано два станка из трех имеющихся; на второй операции – все три станка; на третьей операции – два станка из двух. При изготовлении изделия Б на ПЛ будет простаивать два станка один на второй и один на третьей операциях.

Организация групповых поточных линий. Расчет групповых ПЛ по существу ничем не отличается от расчета однопредметных поточных линий. Проиллюстрируем это на примере.

П р и м е р . Проанализировать соотношение «величина оборотного задела – численность рабочих» на групповой поточной линии. На линии изготавливается 240 комплектов деталей в смену. Исходные данные приведены в таблице.

Р е ш е н и е . Такт работы ПЛ определяем по (3.1):

r = Fэф / N = 480 / 240 = 2 мин на комплект деталей.

Определим параметры ПЛ при изготовлении комплекта 1 – (А + Б). Расчетное количество рабочих мест (станков) на операциях ПЛ находим по (3.2):

cp1 = 1,6 / 2 = 0,8; cp2 = 3 / 2 = 1,5; cp3 = 1,3 / 2 = 0,65; cp4

=5,1/2=

= 2,55; cp5 = 2,3 / 2 = 1,15.

Принятое количество рабочих мест (станков) в данном случае будет следующим: c1 = 1; c2 = 2; c3 = 1; c4 = 3; c5 = 2; итого – девять станков. Очевидно, что ПЛ с таким соотношением количества расчетных и принятых рабочих мест следует отнести к прямоточным поточным линиям. Численность рабочих на ПЛ определим исходя из трудоемкости производственной программы: 240 (1,6 + 3,0 + 1,3 + 5,1 + 2,3) /480 = 7 человек. Итак, при изготовлении комплекта 1 на прямоточной поточной линии необходимо установлено девять станков, которые будут обслуживать семь рабочих-многостаночников. При этом на поточной линии образуются межоперационные оборотные заделы.

Определим параметры ПЛ при изготовлении комплекта 2 – (А + 2Б). В этом случае нормы времени выполнения операций будут либо равны, либо кратны такту работы ПЛ. Количество станков на операциях очевидно будет следующим: с1 = 1; с2 = 2; с3 = 1; с4 = 3; с5 = 2; итого – девять станков. Линию следует отнести к непрерывно-поточной. Таким образом, в этом случае на ПЛ будет установлено девять станков, на которых будет работать девять рабочих. Межоперационные оборотные заделы на линии будут отсутствовать.

Результаты расчета показывают, что существует связь между оборотным заделом и численностью рабочих на ПЛ. При проектировании поточной линии необходимо сравнить затраты на хранение меж-операционных оборотных заделов с заработной платой двух рабочих, способных заместить этот задел на ПЛ. Если детали дорогостоящие, а заработная плата рабочих невысокая, то более экономичной будет непрерывно-поточная линия. Если детали, входящие в комплект, – малоценные, а заработная плата рабочих относительно высокая, то следует предпочесть вариант прямоточной поточной линии, на которой численность рабочих будет минимальной.

ТРЕНИРОВОЧНЫЕ ЗАДАНИЯ

З а д а н и е 1 Шаг рабочего конвейера равен 1,5 м. Нормы времени на выполнение операций следующие: t1      =       3,6;   t2      =       5,4;   t3=    1,8;   t4      =       5,4;

t5 = 3,6 мин/ед. Программа выпуска – 500 ед. продукции в сутки. Режим работы линии – две смены по 8 ч. Регламентированные перерывы на отдых рабочих 30 мин/смену. Определить такт ПЛ, число рабочих мест на операциях. Длину общей части конвейера, если на четвертой операции фактические затраты времени могут быть больше установленной нормы и достигать величины 7,4 мин/ед.

З а д а н и е 2 Рассчитать и построить эпюру оборотного задела между двумя операциями со следующими значениями норм времени: t1 = 11,7; t2 = 3,9 мин./ед. Такт прямоточной поточной линии составляет 9 мин. Загрузка оборудования, выполняющего операции показана на рис. 3.9.

установлено два станка, а на второй - один станок

З а д а н и е 3 Определите период распределительного конвейера и закрепите разметочные знаки

Рабочими местами. Исходные данные:

d = 1, с2 = 3 и с3 = 4 рабочих места на первой, второй и третьей операциях, соответственно.

РЕШЕНИЯ ТРЕНИРОВОЧНЫХ ЗАДАНИЙ

Решение задания 1. Рассчитаем такт поточной линии по (3.1)

г = 2 (480- 30) / 500 = 1,8 мин/ед.

Определим число рабочих на операциях по (3.2):

d = 3,6 / 1,8 = 2; с2 = 5,4 / 1,8 = 3; с3 = 1,8 / 1,8 = 1; С4 = 5,4 / 1,8 = 3; с5 = 3,6 / 1,8 = 2.

Длину рабочей зоны операции рассчитаем по (3.5):

Z1 = 1,5.2 = 3 м; Z2 = 1,5-3 = 4,5 м; U = 1,5 • 1 = 1,5 м; U= 1,5-3 = 4,5 м; Z5 = 1,5-2 = 3 м.

На четвертой операции определим длину резервной зоны. Для этого находим скорость конвейера по (3.4): v = 1,5 / 1,8 = 0,83 м/мин Предварительная длина резервной зоны

4ез = v (max - 4) = 0,83 (7,4 - 5,4) = 1,66 м.

Длина резервной зоны должна быть либо равна шагу конвейера, либо кратна ему. Принимаем Zрез = 2 1,5 = 3 м > ь1 рез = 1,66 м. Итак общая длина рабочего конвейера

1общ = 3 + 4,5 + 1,5 + (4,5 + 3) + 3 = 19,5 м.

Решение задания 2. По формуле (3.7) рассчитываем изменение величины межоперационного оборотного задела для

Т= 240 (1 - 0,43 - - 0,3) = 240 • 0,27 = 64,8 мин: AZ = 64,8 • 1 / 11,7 - 64,8 • 0/     3,9         =       6       ед.;    для

Г= 240- 0,43 = 103,2 мин: AZ = 103,2- 1 / 11,7 - 103,2 • 1 / 3,9 = -18 ед.; для Г= 240-0,3 = 72 мин: AZ = 72 • 2 / 11,7 - 72 • 0 / 3,9 = 12 ед.

Далее определяем величину недостающего задела на момент запуска линии: 6 - 18 = -12 ед. Очевидно, что если в начальный момент времени между операциями будет иметься задел в количестве 12 ед., то в конце периода комплектования задела величина задела будет точно такой же: 12 + 6 - 18 + 12 = 12 ед. Эпюра межоперационного оборотного задела показана на рис. 3.10.

Р е ш е н и е з а д а н и я 3. Очевидно, что период распределительного конвейера будет равен 12,

так как 12 – это наименьшее число, которое без остатка делится на один, три и четыре. Закрепление разметочных знаков периода конвейера за рабочими местами показано в таблице.

Закрепление разметочных знаков периода конвейера за рабочими местами.

Номер рабочего на ПЛ         Номера периода

1.1    1 – 12

2.1 2.2 2.3  1,      4, 7, 10

2,      5, 8, 11

3,      6, 9, 12

3.1 3.2 3.3 3.4     1,      5, 9

2,      6, 10

3,      7, 11

4,      8, 12

ТЕСТ

1       Чем отличается рабочий конвейер от распределительного конвейера?

а)      Рабочий конвейер используется в массовом производстве, а распределительный в крупносерийном производстве.

б)      На распределительном конвейере изделие обрабатывается на рабочих местах, расположенных по ходу конвейера с одной или с двух сторон; на рабочем непосредственно на транспортере конвейера.

в)      На рабочем конвейере транспортер движется непрерывно, а на распределительном конвейере транспортер движется в пульсирующем режиме.

2       Чем отличается групповая поточная линия от переменно-поточной линии?

а)      На групповой линии работают постоянно закрепленные группы рабочих, а на переменно-поточной рабочие сменяют друг друга по определенному графику.

б)      Групповая линия состоит из группы однородных поточных линий; переменно-поточная – из группы разнородных поточных линий.

в)      На групповой линии детали комплектуются в группы и передаются с одного рабочего места на другое также группами; на переменно-поточной линии после обработки партии одного наименования линия переналаживается и запускается партия другого наименования.

3       Возникают ли на конвейере межоперационные оборотные заделы?

а)      Да, возникают.

б)      Нет.

в)      На одних рабочих местах заделы имеются, а на других – нет.

4       Прямоточные поточные линии используются:

а)      в единичном производстве;

б)      в массовом производстве;

в)      в серийном производстве.

5       Почему проектируют резервные зоны операций на рабочем конвейере?

а)      Потому, что невозможно установить точную норму времени на выполнение некоторых операций.

б)      Для того, чтобы осуществлять ремонт оборудования.

в)      Для того, чтобы выпускать дополнительные объемы продукции.

6       Период распределительного конвейера это:

а)      время циклической работы транспортера;

б)      длина рабочей зоны операции, кратная общей длине конвейера;

в)      количество разметочных знаков, используемое для разметки транспортера конвейера.

7       Такт поточной линии это:

а)      интервал времени, через который готовые изделия выпускаются поточной линией;

б)      время обработки изделия на данном рабочем месте;

в)      время, через которое линия останавливается для отдыха рабочих.

8       Многостаночное обслуживание используется:

а)      на конвейерах;

б)      на групповых поточных линиях;

в)      на прямоточных поточных линиях.

9       На каких поточных линиях рабочие и оборудование загружены не полностью?

а)      На конвейерах.

б)      На групповых поточных линиях.

в)      На прямоточных поточных линиях.

10     Шаг конвейера это:

а)      расстояние между осями смежных изделий, расположенных на транспортере;

б)      единица измерения длины рабочей зоны операции;

в)      расстояние между рабочими, расположенными по разные стороны транспортера.


4 ОРГАНИЗАЦИЯ ПРОИЗВОДСТВА КАК КОНКУРЕНТНОЕ ПРЕИМУЩЕСТВО

4.1 СОВРЕМЕННЫЕ МЕТОДЫ ОРГАНИЗАЦИИ ПРОИЗВОДСТВЕННЫХ ПРОЦЕССОВ

До 60-х гг. XX в. в мире существовал рынок производителей продукции, т.е. рынок продавцов. Основной упор в это время делался на снижение производственных издержек, в результате чего появляется интенсивная конкуренция по цене товара, что привело к перемещению целых отраслей в страны с низкой заработной платой. В 1970-е гг. возникает рынок потребителя. В развитых странах появляется существенный избыток товарной массы и разворачивается борьба за покупателя. Именно тогда в Японии производители продукции пришли к осознанию того, что высокого качество изделий можно достигнуть при более низких издержках производства. Основным фактором конкурентной борьбы становится качество продукции. Высокое качество при относительно низких издержках производства можно обеспечить за счет высокой операционной эффективности.

Операционная эффективность – это предельно высокий уровень производительности всех операций, осуществляемых в сфере бизнеса: в производстве, в финансовых расчетах, при транспортировке, складировании материалов и продукции, в обучении и переподготовке персонала и т.д. Высокая операционная эффективность (ОЭ) обеспечивала Японии в 1970 – 1980-е гг. конкурентное преимущество по сравнению с другими странами.

Впервые понятие конкурентного и сравнительного преимущества ввел в науку американский ученый М. Портер2. Сравнительное преимущество – это более низкие факторные издержки простота доступа к сырью, дешевой рабочей силе, капиталу или к развитой инфраструктуре. Предприятие, которое все это имеет, обладает в данном регионе сравнительным, но не конкурентным преимуществом. Конкурентное преимущество предприятие получает при наличии высочайшей операционной эффективности в области использования тех факторов производства, к которым имеет доступ. Простота доступа к факторам производства и высокая ОЭ формировали надежное конкурентное преимущество до начала 90-х гг. XX в. В настоящее время этого уже не достаточно. Для обеспечения конкурентного преимущества необходимо то, что называют «инновационными способностями». Цель инновации – создать такой продукт, технологию или бизнес, которые длительное время не смогли бы скопировать конкуренты. Таким образом, на первый план выдвигаются «инновационные способности» фирмы, заключающиеся в возможностях генерирования новых идей и скорости доведения этих идей до конкурентоспособного продукта. Конкуренция в области нововведений является конструктивной, поскольку позволяет создавать новые, отличные от существующих, товары и услуги. Конкуренция в области операционной эффективности в настоящее время, по своей сути деструктивна, поскольку современные предприятия уже достигли предела производительности в осуществлении различных бизнес-операций и уже не способны удерживать лидирующие позиции в этой области по следующим причинам:

1)      современные методы организации производственных процессов не являются секретом и могут быть использованы всеми конкурентами с одинаковым успехом;

2)      ученые и консультанты быстро распространяют передовые приемы менеджмента и маркетинга, а конкуренты быстро их осваивают;

3)      конкуренты используют стандартное оборудование и известные технологии производства, мало чем отличающиеся друг от друга, что также не может сформировать конкурентного преимущества.

В результате такой конкуренции не появляется ничего нового, а сама конкуренция имеет изматывающий характер.

Дисциплина «Организация производства» занимается вопросами разработки эффективных методов организации производственных процессов, а также проблемами подготовки производства к выпуску новых продуктов в кратчайшие сроки. Рассмотрим наиболее известные современные методы организации производственных процессов. К ним относят технику работы «точно к сроку», организация сборочных работ на рабочих постах и производство продукции на смешанных поточных линиях.

Техника работы «точно к сроку» (ТКС). Первоначально появилась в Японии, а затем получила распространение в США и Западной Европе. Основная идея этого метода максимально возможное сокращение запасов материалов, комплектующих изделий, незавершенного производства и готовой продукции. Для этого поставки материалов и комплектующих изделий на предприятие должны осуществляться точно к моменту их запуска в производство. Объем и время поставок рассчитаны так, чтобы материалы и комплектующие изделия все, без остатка были бы переданы с транспортного средства непосредственно в цех, минуя склад материалов. Для того, чтобы сократить величину незавершенного производства, необходимо обеспечить минимальную продолжительность производственного цикла, а величину производственной и транспортной партий сделать по величине наименьшими. Запас готовой продукции практически будет отсутствовать только в том случае, когда необходимое количество изделий будет изготовлено точно к тому сроку, к которому пожелал заказчик.

Обычное производство работает по выталкивающему типу, а ТКС – по вытягивающему. В первом случае, пока есть необходимое количество материалов и комплектующих изделий на складе, процесс производства будет продолжаться, и будет происходить заполнение склада готовой продукции изделиями. То есть предметы труда «проталкиваются» по ходу производственного процесса до тех пор, пока есть соответствующий запас на складе материала. В случае ТКС наличие необходимых запасов материалов и комплектующих изделий – не причина для начала производства. Производственный процесс начнется только в том случае, когда поступит заявка от потребителя на определенное количество продукции. Заявка «вытягивает» из производственной системы только то количество изделий, которое необходимо в данный момент времени заказчику.

Портер М. Конкуренция: Пер. с англ. М.: Вильямс, 2000.

В системе ТКС направление распространения информации о заказе и направление движения материалопотока, связанного с выполнением этого заказа, - прямо противоположны (рис. 4.1).

То есть, информация распространяется против хода технологического процесса и все подразделения предприятия получают исчерпывающие сведения о предстоящей работе; только после этого производство начинает функционировать. Информация о заказе сначала поступает в сборочный цех; сборочный цех сообщает механическому свою потребность в деталях; механический цех информирует заготовительный о необходимом количестве заготовок и, наконец, заготовительный цех сообщает свою потребность в материалах отделу снабжения.

Система ТКС может производить только ту продукцию, сведения о технологии производства которой помещены на специальные карты. Каждый цех или производственный участок имеет определенный набор таких карт. Таким образом, технологический маршрут производства какого-то изделия полностью описан в картах, имеющихся в заготовительном, механическом и сборочном цехах. Эти карты прикреплены к контейнерам с необходимыми заготовками или деталями. Это означает, что в каждом цехе уже имеется необходимый минимальный технологический задел под производство той продукции, заказ на производство которой, возможно, поступит на предприятие. Информация, которая проходит по всем цехам от сборочного к заготовительному, позволяет выбрать нужный контейнер и карту для начала процесса производства. Необходимые сведения об объемах производства по заказу распространяются по внутренней локальной компьютерной сети предприятия. После выполнения заказа цехи предприятия останавливаются в ожидании следующего заказчика. Достоинства и недостатки системы ТКС:

1)      существенно снижаются запасы материалов, готовой продукции и величина незавершенного производства, в результате чего улучшаются показатели оборачиваемости оборотных средств и прибыли на активы; для получения такого результата необходимо иметь надежных поставщиков материалов и профессиональных маркетологов;

2)      удается добиться более высокого качества продукции, поскольку изделия производятся небольшими партиями; производство – гибкое, так как способно производить несколько видов продукции;

3)      запасы снижаются, что является достоинством, однако, возникают простои производственных мощностей предприятия, поскольку исключена возможность производства продукции «про запас», под будущую реализацию;

4)      недостатком является большой объем сверхурочных работ, так как поступивший заказ необходимо выполнить в кратчайшие сроки; сверхурочные работы увеличивают себестоимость продукции.

Предприятие переходят на систему ТКС поэтапно – сначала переводят на эту технику работы один цех, а затем – другие. После освоения системы ТКС предприятие уже никогда не возвращается к традиционным методам управления.

Внедрение этой системы позволяет снизить запасы незавершенного производства более чем на 80 %, запасы готовой продукции – примерно на 30 %. Продолжительность производственного цикла уменьшается в среднем на 40 %. Повышается гибкость производства.

Организация сборочных работ на рабочих постах. Рабочий сборочный конвейер был изобретен Г. Фордом в 20-х гг. XX в.3. Основные характеристики фордовского конвейера следующие: дифференциация процесса сборки на простейшие операции, в результате чего труд рабочего становится монотонным и бессодержательным; жесткая связь рабочих на поточной линии, задаваемая транспортером - в случае несоблюдения такта конвейера одним рабочим может остановиться и вся линия. Эти недостатки полностью устраняются на поточных линиях, организованных по методу рабочих постов. Впервые этот метод был применен на сборке двигателей для автомобилей «Вольво», а затем был использован и на заводах «Форд» и «Фиат».

Рабочий пост - это небольшой производственный участок, на котором работает 5 - 6 человек. За каждым рабочим постом закреплен комплекс сборочных операций общей трудоемкостью т.

Время выполнения операций на рабочих постах синхронизировано

т,/с, = г,

где / - количество комплексов операций, необходимых для сборки изделия; с, - количество рабочих постов, выполняющих данный комплекс операций; г - такт выпуска изделий с поточной линии, или такт запуска материалов на нее.

Предположим, что для сборки какого-то изделия необходимо выполнить три комплекса операций со следующими значениями трудоемкости: ц = 3, т2 = 2, т3 = 1 ч. Для того, чтобы комплексы операций выполнялись синхронно необходимо следующее количество рабочих постов: с1 = 3, с2 = 2, с3 = 1. Очевидно, что в этом случае такт поточной линии будет равен 1 ч (3 / 3 = 2 / 2 = 1 / 1 = 1 = г). Схема планировки такой поточной линии показана на рис. 4.2.

Заготовки (материалы, комплектующие изделия) запускаются на поточную линию с интервалом в 1 ч и с таким же интервалом с поточной линии сходят готовые изделия - это такт поточной линии. Нетрудно заметить, что чем больше трудоемкость комплекса операций, тем больше требуется постов выполняющих этот комплекс. Поэтому конфигурация поточной линии похожа на продольное сечение трубы, по которой движется поток жидкости. Чем выше скорость потока (скорость сборки изделий), тем сечение потока (количество постов, выполняющих данный комплекс операций) меньше и наоборот.

На каждом рабочем посту изделие собирается на специальной платформе, снабженной электроприводом. После окончания всех операций, закрепленных за этим постом, рабочие включают электропривод платформы и перевозят изделие на один из следующих рабочих постов. Поскольку время выполнения комплексов операций синхронизировано, то к моменту окончания работ на предыдущем посту обязательно освободится один из следующих постов по ходу технологического процесса. Таким образом, связь между постами нежесткая, поскольку такт работы задает не транспортер, как это происходит на рабочем конвейере, а сами рабочие, перемещающие платформы с изделиями с одного поста на другой.

На каждом рабочем посту используется бригадная форма организации труда. Рабочие могут помогать друг другу или подменять коллегу в нужный момент времени. Выполнять операции, закрепленные за ними, по очереди, что делает труд рабочих более содержательным и не таким монотонным и изнуряющим как на рабочем конвейере. Обязанности бригадира также могут выполняться рабочими по очереди.

Производство продукции на смешанных поточных линиях. Начнем изложение этого вопроса с небольшой исторической справки. Как уже говорилось выше, в начале XX в. подлинную революцию в автомобилестроении произвели фордовские конвейеры. Конвейеры – это однопредметные поточные линии на которых и в настоящее время изготавливаются или собираются изделия одного какого-то наименования. Например, холодильники, фотоаппараты, автомобили и т.д. Продукция, сходящая с конвейеров, предназначена для массового потребителя. В начале 80-х гг. XX в. производители осознали тот факт, что новых рыночных ниш для массового производства остается все меньше и меньше. Появилась необходимость производить продукцию небольшими сериями на переналаживаемом оборудовании. Широкое распространение получили переменно-поточные линии. На такой линии, после переналадки оборудования можно выпускать в течение месяца три – четыре наименования продукции. Все изделия, производимые на переменно-поточных линиях, должны иметь одинаковые или сходные технологические маршруты. Оборудование на переменно-поточной линии переналаживается 3 – 4 раза за месяц; во время переналадки изменяются не только режимы работы оборудования, но и заменяется инструмент, иная технологическая оснастка, а также чертежи, по которым изготовлялось или собиралось предыдущее изделие. Только после этого переходят на выпуск следующего изделия, закрепленного за этой поточной линией. На переналадку переменно-поточной линии требуется достаточно большое время, иногда на это уходит целая рабочая смена, т.е. 8 ч. Используются переменно-поточные линии в крупносерийном или серийном производствах.

Основным достоинством поточного производства является низкая себестоимость продукции, которая достигается за счет относительно больших объемов производства. Основной недостаток – отсутствие индивидуальных особенностей в изделиях; продукция конвейерного производства неотличима друг от друга, что уже не устраивает современного покупателя, особенно в сфере производства готовой одежды, мебели, обуви и т.д. Кроме того, считается, что изделие, изготовленное индивидуально, на заказ всегда более качественное, чем продукт массового производства.

Смешанное производство это такая организация производственного процесса, при которой совмещаются достоинства поточного производства, с его низкой себестоимостью продукции, с преимуществами индивидуального производства, обеспечивающего высокое качество изделий. На смешанных поточных линиях изделия производятся очень маленькими партиями, иногда поштучно. После выпуска каждой небольшой партии, или единицы продукции оборудование необходимо быстро переналадить под выпуск следующего изделия. Поэтому если на переменно-поточной линии оборудование переналаживается несколько раз за месяц, то на смешанной поточной линии – десятки раз за рабочую смену. Поэтому оборудование на смешанных линиях должно переналаживаться за несколько минут, в противном случае потери рабочего времени будут очень большими и производство будет нерентабельным. Можно привести следующий пример. На японских автомобильных заводах на переналадку 800-тонного пресса рабочим требуется не более 12 мин, а в США аналогичный пресс рабочие переналаживают в течение 6 ч.

Итак, в чем же преимущество производства продукции очень мелкими партиями, даже если потери времени на переналадку оборудования являются весьма существенными? Это преимущество – в высоком качестве продукции, изготовляемой индивидуально. Здесь большое значение имеет психологическое восприятие брака или дефекта при производстве продукции большими или малыми партиями. Например, если в партии деталей величиной 1000 ед. бракованной оказалась 1 ед., то процент брака вос-принимается как ничтожно малая величина – 0,1 %. Если эту же продукцию разделить на 500 партий по 2 ед. в каждой, то 1 ед. бракованной продукции в партии из 2 ед. уже будет ассоциироваться с очень значительным браком – 50 %. Такой психологический эффект позволяет добиться очень высокого качества продукции, производимой на смешанных поточных линиях.

П р и м е р . Рассмотрим некоторые особенности организации переменно-поточной и смешанной поточной линии на примере производства небольших насосов трех типов, условно назовем их насосами A, B и C. За смену необходимо собрать 64 насоса, из них 32A, 16B и 16C. Время сборки одного насоса A – 5 мин, B и C по 5 мин. Установить величину партии изготовления насосов на переменно-поточной и смешанной линиях.

Р е ш е н и е . На переменно-поточной линии величина партии изготовления насосов будет максимальной для того, чтобы количество переналадок за рабочую смену было бы минимальным. Очевидно, что величина партий будет следующей: A – 32 ед., B – 16 ед. и C – 16 ед. Время, затраченное на выпуск этих партий: A – 32 ? 5 = 160, B 16 ? 10 = 160, C – 16 ? 10 = 160 мин. Итого, за время, равное продолжительности рабочей смены (160 ? 3 = 480 мин), будет изготовлено 64 насоса при трех переналадках оборудования. Частные такты выпуска насосов: A 5, B – 10 и C – 10 мин/ед.

На смешанной поточной линии партии изготовления насосов должны быть минимальными. При тех же частных тактах выпуска изделий, что и на переменно-поточной линии, можно установить следующую последовательность производства насосов в течение одного часа:

2A     (2      ?        5       = 10 мин) > B (10 мин) > C (10 мин) > 2A (2 ? 5 = 10 мин) > > B (10 мин) > C (10 мин).

Итого, за один час будет осуществлено шесть переналадок линии, а за рабочую смену – 64 переналадки. Очевидно, что оборудование на смешанной линии должно переналаживаться «в одно касание», иначе ставка на качество продукции будет неоправданной из-за слишком больших потерь рабочего времени и низкой производительности рабочих.

Существует еще две причины, по которым смешанный выпуск продукции считается менее производительным, чем производство изделий на переменно-поточной линии: сборщик тратит дополнительное время на поиск детали для очередной модели изделия; требуется больший запас деталей на рабочих местах, чем на переменно-поточной линии. Для сокращения времени поиска нужной детали применяется цветная маркировка ячеек стеллажей, где лежат детали, а также оптимальное размещение стеллажей на рабочих местах сборщиков. Для уменьшения запаса деталей может применяться техника работы ТКС.


4.2 ПОДГОТОВКА ПРОИЗВОДСТВА НОВОЙ ПРОДУКЦИИ

Процесс освоения новой продукции требует непрерывной информационной поддержки на всех этапах жизненного цикла продукта. Современные информационные технологии позволяют заменить килограммы технической документации дисками и дискетами, а также объединить единым информационным пространством различных участников инновационного процесса: заказчика, поставщиков, подрядчиков, проектировщиков, а также каналы сбыта новой продукции. Создаются многопрофильные коллективы, работающие по единому плану разработки проектно-конструкторской документации, производства новой продукции и ее поддержки на фазе эксплуатации.

Предприятие, не применяющее профессионально ориентированные программные продукты в области подготовки производства новых изделий, не может считаться конкурентоспособным, поскольку при ручном способе вычерчивания чертежей и разработке другой технической документации, срок освоения новой продукции становится неприемлемо большим, а затраты на доработку и внесение изменений в проект слишком значительными.

Применение новых информационных технологий в области подготовки производства позволило фирме Olivetti сократить сроки разработки новой продукции с 3 лет до 9 месяцев.

Подготовка производства это наиболее сложный и дорогостоящий этап инновационного процесса. Под подготовкой производства понимают совокупность научно-исследовательских, конструкторских, технологических, производственных, организационно-плановых работ и расчетов, необходимых для освоения новой и совершенствования выпускаемой предприятием продукции. Выпуск новой продукции требует изготовления большого количества инструментов, приспособлений, штампов и другой технологической оснастки, приобретения или изготовления недостающего оборудования, создания опытного образца, его испытание и многих других работ, предшествующих запуску продукции в серийное производство.

Объем работ по подготовке производства увеличивается с увеличением серийности продукции. Сложная продукция имеет тысячи, иногда десятки тысяч деталей. Это требует длительного времени, большого объема подготовительных работ, даже для изделий, выпускаемых в единичных экземплярах. В серийном производстве затраты существенно возрастают, так, например, подготовка производства одной детали средней сложности в крупносерийном производстве требует более 500 нормо-часов.

В подготовке производства выделяют три этапа – прикладные научно-исследовательские работы (НИР), конструкторская и технологическая подготовка производства. Технологическая подготовка производства следует непосредственно за конструкторской и, где это возможно, должна проводиться параллельно с ней. В крупносерийном производстве технологическая подготовка по объему, продолжительности и стоимости занимает наибольший удельный вес в общем объеме подготовки производства.

Прикладные научно-исследовательские работы. Прикладные НИР проводят научно-исследовательские институты (НИИ) и конструкторские бюро (КБ), последние могут быть как самостоятельными организациями, так и являться подразделениями предприятий. Наиболее длительными и капиталоемкими являются инвестиции в прикладные НИР. Эти работы проводят только при освоении принципиально новой продукции, базирующейся на изобретениях и научных открытиях. Финансировать прикладные НИР могут только крупные промышленные предприятия, работающие в наукоемких отраслях производства, Инвестиции в прикладные НИР имеют невысокую результативность – всего лишь 30 – 50 % разработок заканчиваются успешно. Средняя продолжительность прикладных НИР 3 – 4 года. Тем не менее, крупнейшие корпорации вынуждены вкладывать средства в этот вид деятельности, поскольку именно в этой области формируется конкурентное преимущество. НИИ и КБ занимаются не только прикладными НИР, основной объем работ приходится на опытно-конструкторские работы (ОКР):

Прикладные НИР        4 %

Эскизное проектирование    34 %

56 %

Разработка рабочей конструкторской документации на опытные образцы их изготовление и испытание

Корректировка документации       6 %

Итого 100 %

Рынок наукоемкой продукции в конце XX в. оценивался примерно в 2,3 трлн. долл., из них на долю России приходилось всего лишь 0,3 %. По оценке экспертов в начале XXI в. доля России может увеличится до примерно 10 %. Наша страна относится к тем немногим странам, которые владеют макротехнологиями – определяющими лицо современного мира. Всего насчитывается 50 макротехнологий, обеспечивающих выпуск наукоемкой продукции: производство самолетов, атомных реакторов, морских судов, ракетоносителей, композитных материалов и т.д. Особенных успехов Россия добилась в области производства вооружений. Россия – единственная страна, которая производит сразу два типа истребителей – «МИГ» и «СУ», а также два типа вертолетов – «МИ» и «КА». Европейским же странам пришлось объединить свои усилия для производства одного типа истребителя – «Мираж». В производстве гражданской продукции наша страна пока не занимает лидирующих позиций в мире.

Конструкторская подготовка производства состоит из ряда стадий. Проектирование новой продукции начинается с разработки технического задания.

1)      В техническом задании формулируются технические, эксплуатационные и производственные требования к продукции. Задаются исходные данные для проектирования. Особое внимание уделяется проработке патентов, специальной литературы с описанием аналогичной продукции или технологии. Техническое задание согласуется и подписывается заказчиком.

2)      Техническое предложение. Рассматриваются и отбираются различные варианты конструкции изделия. Если имеются сомнения в технической осуществимости замысла, разрабатываются параллельные подходы, проводят исследования там, где наблюдается максимальная неопределенность. Параллельные подходы гарантируют, что хотя бы одно пригодное решение будет получено. Например, при разработке

конструкции капсулы первой баллистической ракеты, проводились одновременные эксперименты с различными обтекателями капсулы. Цель – выяснить какая капсула возвращается в атмосферу, не сгорая.

3)      Эскизная документация. Содержит конструкторские документы, которые дают представление об устройстве и принципе действия изделия. На этой стадии разрабатываются: принципиальная схема изделия, общая компоновка, эскизы чертежей общего вида, спецификации сборочных единиц. Изготавливается лабораторный макет нового изделия.

4)      Техническая документация. Это совокупность конструкторских документов, которые содержат окончательные технические решения и исходные данные для разработки рабочей документации. На этой стадии проводятся расчеты на прочность и жесткость, долговечность, коррозийную стойкость и т.д. Создаются компоновочные чертежи, чертежи агрегатов и сборочных единиц. Разрабатывается инструкция по эксплуатации изделия.

5)      Рабочая документация. Эта документация непосредственно используется в цехах предприятия для изготовления деталей, сборочных единиц, сборки изделия. В состав рабочей документации входят: чертежи всех деталей, сборочных узлов, спецификации покупных изделий. Эта документация разрабатывается на опытный образец, установочную серию, установившееся производство.

Изготовлению опытного образца предшествует соответствующая технологическая подготовка его изготовления. Проводятся испытания образца на соответствие требованиям технических условий. По результатам испытаний рабочая документация дорабатывается и затем используется для производства установочной серии. По результатам производства вносятся изменения в документацию на установившееся серийное производство.

На этапе конструкторской подготовки производства разработчики руководствуются тремя основными принципами – унификации, агрегатирования и технологичности изделия.

Унификация – это устранение излишнего многообразия в конструкции деталей и узлов, в изделиях одинакового назначения, но различных типоразмеров, а также в конструкциях резьб, посадок, валов, отверстий, сортах материалов, в формах технической документации. Унификация приносит большую выгоду на этапе конструкторской подготовки, поскольку при проектировании нового изделия используются чертежи деталей и узлов аналогичных изделий, выпускаемых предприятием. Кроме того, унификация позволяет перейти от единичных процессов изготовления деталей к серийным, что снижает их себестоимость.

Принцип агрегатирования (блочности) лежит в основе такой компоновки изделия, при которой оно создается из самостоятельных узлов и механизмов, обособленно монтируемых в общем корпусе или раме. Применение такой компоновки позволяет проводить параллельное проектирование отдельных сборочных единиц, что сокращает общий срок разработки изделия. Принцип блочности позволяет также производить ремонт и модернизацию изделия с минимальными затратами времени, что обеспечивается унификацией присоединительных размеров.

Принцип технологичности это такие качества конструкции, которые позволяют изготовить ее в конкретных производственных условиях с наименьшими затратами и кроме того обеспечивают заданную надежность в процессе эксплуатации. При отработке изделия на технологичность используют метод функционально–стоимостного анализа, который достаточно полно освещен в учебной литературе.

Технологическая подготовка производства. На этом этапе осуществляется выбор заготовок; выбор производственных участков и цехов для изготовления деталей и сборки изделия; подбор типовых технологических процессов, проектирование последовательности технологических операций; проектирование и изготовление технологической оснастки; проектирование производственных участков; оформление документации на технологические процессы; внедрение технологических процессов.

Основные стадии технологической подготовки производства следующие.

1)      Разработка технологических процессов. На этой стадии разрабатывается маршрутная, а затем операционная технология изготовления деталей и сборочных единиц. При этом используются фонды документации на типовые технологические процессы и операции. Выбор различных вариантов технологического процесса должен определяться не только техническими требованиями производства, но и экономической целесообразностью.

2)      Конструирование и изготовление нестандартного специального технологического оборудования и технологической оснастки. На этой стадии используют нормальное и специальное технологическое оснащение. Нормальное – все виды режущих и измерительных инструментов широкого применения.

Специальное – для выполнения конкретной технологической операции. Чем выше серийность производства, тем больше применяется специальное оснащение. При изготовлении специального оснащения в свою очередь используется нормализованное, ранее спроектированное и изготовленное технологическое оснащение. Нормализованное оснащение – это банк унифицированных деталей и сборочных единиц, из которых по чертежам собирают нужное приспособление. После использования оно разбирается на составные части и из них может быть собрано другое приспособление. Преимущество нормализованной оснастки – быстрота ее использования (обычно сборка приспособления занимает 2 – 3 ч). На изготовление и проектирование специальной оснастки уходит 60 – 70 % всей технологической подготовки производства. Использование нормализованной оснастки позволяет расширить область применения оснащения, сделать его более универсальным.

3) Внедрение технологических процессов. Эта работа осуществляется по мере получения цехами технологической документации и специального оснащения. Наладка и внедрение технологических процессов осуществляется технологами, которые разрабатывали эти процессы, при непосредственном участии цехового персонала. Технологический процесс считается внедренным, когда достигнуты изготовление и сборка изделия в соответствии с требованиями чертежа.

На этапе технологической подготовки производства принцип типизации технологических процессов имеет большое значение. Все детали, проходящие механообработку, делятся на определенные типы. На типы деталей составляются карты-трафареты типового технологического процесса. Это позволяет обрабатывать типовые детали по одному и тому же маршруту, используя то же самое оборудование, оснастку, обеспечивать одинаковую точность и чистоту поверхности. Типизация позволяет снизить трудозатраты на составление документации в среднем на 60 %.

Сравнение двух различных технологий производства. При освоении новой продукции на предприятии могут применяться уже известные технологии. Например, для изготовления новой детали можно использовать либо сварную, либо литую заготовки. Необходимое сварочное и литейное оборудование на предприятии имеется. Поэтому капитальные вложения в это оборудование нет необходимости принимать во внимание при выборе того или иного варианта производства деталей. Выбор технологии производства в этом случае осуществляется только по изменяющимся статьям текущих затрат. Все изменяющиеся затраты разделяют на переменные и постоянные:

Z = Xn+W ,         (5.1)

где X и W – переменные затраты на единицу продукции и постоянные затраты на произведенный объем продукции, соответственно; n – произведенные объемы продукции.

Та технология будет более эффективной, которой будет соответствовать минимум затрат Z.

Технологическая себестоимость продукции – это суммарная величина текущих затрат, которая зависит от метода обработки; при сравнении методов обработки во внимание принимаются только те затраты, которые имеют различное значение для этих двух методов.

На рис. 4.3 показаны графики зависимости технологической себестоимости Z от объемов производства n для двух технологий – A и B.

Критический объем производства nk – это такой объем производства продукции, при котором ZA = ZB. Из последнего равенства вытекает, что

nk = (WB -WA)/(X A - XB) . (5.2)

При n < nk более эффективной будет технология A, а при n > nk – технология B, так как затраты Z на производство продукции в этих диапазонах объемов будут минимальны. При n = nk обе технологии бу-дут эквивалентны.

Технология A характеризуется высокими переменными затратами, а

B – высокими постоянными. Для технологий с высокими переменными затратами характерно следующее: высокая материалоемкость, трудоемкость и энергоемкость производства; слабая автоматизация; относительно небольшая стоимость оборудования. Такие технологии конкурентоспособны при небольших объемах производства.

Особенность технологий с высокими постоянными затратами: большая стоимость оборудования; высокий уровень автоматизации; значительная доля заемного капитала. Окупаются эти технологии при относительно больших объемах производства. Применение дорогостоящего оборудования и средств автоматизации позволяет снизить переменные затраты – на материалы и заработную плату производственных рабочих.

П р и м е р . Для производства продукции можно выбрать либо технологию A, либо B. Исходные данные приведены в таблице.

Производственные мощности по обеим технологиям одинаковы и составляют 10 000 ед./г. Выбрать наиболее эффективную технологию при объемах производства 6000 и 9000 ед./г. Р е ш е н и е . Критический объем производства

nk = (WB – WA) / (XA XB) = (185 000 – 80 000) / (34 – 20) = 7500 ед./г.

Следовательно, при 6000 ед. продукции более выгодной будет технология A, с более высокими переменными затратами; при 9000 ед. продукции – B, с более высокими постоянными затратами.

ТРЕНИРОВОЧНЫЕ ЗАДАНИЯ

З а д а н и е 1 В результате унификации вместо трех различных узлов A, B, C создан один унифицированный узел. Затраты на создание унифицированного узла, равные 10 000 р. должны быть списаны в течение первого года выпуска унифицированного узла. Исходные данные:

Узлы

Показатели         A       B       C       Унифицированный

Затраты на материал, р./ед. 849   864   896   896

Зарплата основных рабочих, р./ед.        106   108   112   85

Прочие переменные затраты, р./ед.        106   108   112   81

Постоянные затраты, р./г.    19 000        22 300        25 000        28 000

Годовой выпуск узлов, ед.   120 150 200 470

Определить экономию от унификации узлов.

З а д а н и е 2 Имеется технология производства со следующими характеристиками:

Производственная мощность, ед./г.        20 000

Переменные затраты, р./ед.  100

Постоянные затраты, тыс. р./г.      750

После усовершенствования технологии, производственная мощность не изменяется. Постоянные затраты составляют 825 тыс. р. Каковы должны быть переменные затраты на ед. продукции, чтобы обеспечить эффективность усовершенствованной технологии при загрузке производственных мощностей в диапазоне 70 – 100 %.

Задание 3. Определить при какой месячной программе изготовления деталей становится экономичным применение многошпиндельной сверлильной головки вместо одноинструментальной обработки. Исходные данные:

Затраты Одноинструментальная Головка

Расценка, р./ед.   20     5

Зарплата наладчиков, р./мес.        2800 3500

Расходы на ремонт и эксплуатацию станка, р./ед.   12     16

Амортизация станка, р./ед.  200   180

Износ головки, р./мес. –       50

РЕШЕНИЯ ТРЕНИРОВОЧНЫХ ЗАДАНИЙ

Р е ш е н и е з а д а н и я 1    Рассчитаем суммарную технологическую себестоимость узлов A, B и

C по (5.1)

Z = Xn + W= (849 + 106 + 106) 120 + (864 + 108 + 108) 150 + + (896 + 112 + 112) 200 + 19 000 + 22 300 + 25 000 = 579 620 р.

Технологическая себестоимость изготовления унифицированного узла

Z = Xn + W = (896 + 85 + 81) 470 + 28 000 = 527 140 р.

Экономия на унификации узлов с учетом того, что на разработку унифицированного узла потребовалось 10 000 р. затрат

Э = 579 620 – 527 140 10 000 = 42 480 р.

Р е ш е н и е з а д а н и я 2. Объемы производства, соответствующие минимальной 70 % загрузке производственных мощностей

20 000 ? 0,7 = 14 000 ед./г.

При этой минимальной загрузке, технологическая себестоимость производства продукции по модернизированной технологии должна быть меньше технологической себестоимости производства по старой технологии

100 ? 14 000 + 750 000 > X ? 14 000 + 825 000. Отсюда имеем

X < (100 ? 14 000 + 750 000 - 825 000) / 14 000 = 94,6 р./ед.

Р е ш е н и е з а д а н и я 3. Рассчитаем технологическую себестоимость продукции при одноинструментальной обработке по (5.1)

Z = Xn + W = (20 + 12 + 200) n + 2800 = 232n + 2800 р./мес.

При использовании многошпиндельной сверлильной головки

Z = Xn + W = (5 + 16 + 180) n + 3500 + 50 = 201n + 3550 р./мес.

По (5.2) определяем критический объем производства

nk = (WB - WA) / (XA - XB) = (3550 - 2800) / (232 - 201) = 24 ед./мес.

Отсюда следует, что при объемах производства меньших, 24 ед./мес. следует применять одноинструментальную обработку, а при больших объемах - многошпиндельную головку.

ТЕСТ

1       Новая продукция в процессе создания проходит следующие этапы:

а)      научное исследование, технологическую подготовку, производственное освоение;

б)      научное исследование, технологическую подготовку, конструкторскую подготовку, производственное освоение;

в)      научное исследование, проектно-техническую разработку, организационную подготовку, производственное освоение;

г)       научное исследование, организационную подготовку, проектно-технологическую подготовку, производственное освоение.

2       Отработка изделия на технологичность производится:

а)      после конструкторской подготовки производства;

б)      в процессе конструкторской подготовки производства;

в)      во время технологической подготовки производства;

г)       после технологической подготовки производства.

3       Начальным этапом проектирования изделия является разработка:

а)      технического задания;

б)      эскизного проекта;

в)      технического проекта;

г)       технического предложения.

д)      нет однозначного ответа.

4       Минимальную себестоимость имеет изделие при:

а)      массовом производстве;

б)      серийном производстве;

в)      единичном производстве;

г)       массовом и серийном производстве;

д)      нет однозначного ответа.

5       Затраты, зависимые от метода обработки, называются:

а)      производственной себестоимостью;

б)      плановой себестоимостью;

в)      нормативной себестоимостью

г)       технологической себестоимостью.

6       Назначение изделия, область применения, эксплуатационные, технические и экономические требования определяет:

а)      рабочий проект;

б)      технический проект;

в)      эскизный проект;

г)       техническое задание;

7       Расчет геометрических форм и размеров деталей, выбор материалов и заготовок определяются при составлении:

а)      технического задания;

б)      технического проекта;

в)      эскизного проекта;

г)       рабочего проекта.

8       Основная цель техники работы «точно к сроку»:

а)      освоение новой продукции в кратчайшие сроки;

б)      максимальная загрузка производственных мощностей;

в)      минимизация запасов материалов и готовой продукции;

г)       оптимальная загрузка рабочей силы.

9       Сборка изделий на рабочих постах преследует главную цель:

а)      максимальная производительность сборочных работ;

б)      снижение монотонности и однообразности сборочных работ;

в)      повышение точности сборки;

г)       оптимальная компоновка в пространстве сборочной линии.

10     Основной целью производства продукции на смешанных поточных линиях является:

а)      максимальная производительность линии;

б)      высокое качество продукции;

в)      снижение монотонности и однообразности работ;

г)       улучшение условий труда рабочих.


Страницы: 1, 2, 3


© 2010 Собрание рефератов