Рефераты

Курсовая работа: Влияние схем включения подогревателей энергоблока на тепловую эффективность подогрева

Уравнение смешения в смесителе

Уравнение теплового баланса для П6

Решаем, полученную систему из 3-х уравнений

Энтальпия в точке смешения

Доля отбора пара на П5, П6

1.3.19. Доля отбора пара на смешивающий подогреватель П7

Уравнение теплового баланса для П7

Уравнение материального баланса для П7

Тогда получим следующее уравнение

Решая его, находим

1.3.20. Доля отбора пара на смешивающий подогреватель П8

Уравнение теплового баланса для П8

Поток конденсата из конденсатора

Тогда получим следующее уравнение

Решая его, находим

1.3.21. Контроль материального баланса пара и конденсата

Одним из важных критериев правильности выполнения расчета является контроль материального баланса пара и конденсата, который выражается уравнением

.

Пропуск пара в конденсатор

Доля потока конденсата после основного конденсатора с паровой стороны с учетом конденсата турбоприводов и других потоков равна

Доля потока конденсата из основного конденсатора со стороны регенеративной си­стемы

Равенство выполнено, материальный баланс сходится.


1.3.22. Процесс расширения пара в турбине в h-s диаграмме

Таблица 1.2.

Параметров воды и пара по элементам тепловой схемы

Точка процесса Элемент схемы Пар в отборе Пар (конденсат) в подогревателе Вода за подогревателем
P, МПа t, °С h, кДж/кг P¢, МПа t¢, °С h¢, кДж/кг hдр, кДж/кг Pв, МПа tв, °С hв, кДж/кг u, °С
0 23.275 545.5 3345.1
1 П1 6.737 359.4 3052 6.416 280 1236.7 1175.1 31.85 278 1219.8 2
2 П2 4.95 319.1 2985.2 4.702 260.1 1135.5 924.2 32.05 258.1 1126 2
ПП 4.5 550 3556.3
3 П3 1.832 429.8 3316 1.745 205.6 877.7 783.4 32.25 203.6 881.8 2
Д Деаэратор 1.832 429.8 3316 0.7 165 697.1 - 0.7 165 697.1 0
4 П4 0.508 273.7 3010 0.47 149.5 630.1 630.1 1.2 145 611.4 4,5
5 П5 0.264 204.1 2876 0.244 126.6 531.9 531.9 1.3 122.1 513.4 4,5
6 П6 0.123 130.9 2736.5 0.114 103.4 433.5 433.5 1.4 98.9 415.4 4,5
7 П7 0.043 77.7 2588 0.04 75.8 317.4 - 0.04 75.8 317.4 0
8 П8 0.015 54.1 2468 0.014 52.4 219.4 - 0.014 52.4 219.4 0
К Конденсатор 0.004 29 2321.4
КТП Конденсатор ТП 0.0065 37.6 2405.4

1.4. Определение энергетических показателей конденсационной паротурбинной установки

Таблица 1.3.

Энергетическое уравнение турбоустановки в табличной форме

Цилиндр Отсек турбины Доля пропуска пара через отсек αj

Теплоперепад пара в отсеке

Δhj, кДж/кг

Внутренняя работа на 1 кг свежего пара

αj∙Δhj, кДж/кг

ЦВД 0 -1 α01=α0 =1

h0 - h1 =3345.1 – 3052=

293.1

322.8
1-2 α12=1 -α1=1-0.05098=0.94902

h1 - h2 =3052 – 2985.2=

66.8

40.02
ЦСД 2-3 α23=α12-α2 = 0.94902- 0.11466= 0.83436

hпп - h3 =3556.3 – 3316=

240.3

205.32
3-4

α34=α23-α3-αД-αТП =

= 0.83436- 0.04734- 0.02114- 0.04726= 0.71862

h3 - h4 = 3316 – 3010=

306

98.25
4-5

α45=α34-α4=

=0.71862-0.03232=0.6863

h4 - h5 =3010 – 2876=

134

76.8
5-6

α56=α45-α5=

=0.6863-0.03076=0.65554

h5 - h6 =2876 – 2736.5=

139.5

88.41
ЦНД 6-7

α67=α56-α6=

=0.65554 - 0.02685=0.62869

h6 - h7 =2736.5 – 2588=

148.5

109.07
7-8

α78= α67 - α7=

=0.62869 - 0.02905=0.59964

h7 - h8 =2588 – 2468 =

120

95.16
8-К

α8к= α78 – α8=

=0.59964 - 0.02795=0.57169

h8- hК =2468 – 2321.4=

146.6

101.35

1.4.1. Приведенный теплоперепад

Внутренняя работа турбины на 1 кг свежего пара -, где αj – доля пропуска пара через отсек, а Δhj – теплоперепад в отсеке.

Механический КПД турбины и КПД генератора

1.4.2. Расход пара на турбину

Удельный расход пара

Таблица 1.4.

Расходы пара в отборы турбины

Элемент схемы a=D/D0 D, кг/c Элемент схемы a=D/D0 D, кг/c
П1 0.05098 10.9 П4 0.03232 6.9
П2 0.11466 24.4 П5 0.03076 6.6
П3 0.04734 10.1 П6 0.02685 5.7
Д 0.02114 4.5 П7 0.02905 6.2
ТП 0.04726 10.1 П8 0.02795 6

1.4.3. Полный расход теплоты на турбоустановку

1.4.4. Эффективная мощность турбопривода

1.4.5. Удельный расход теплоты на выработку электроэнергии

1.4.6. Абсолютный электрический КПД

1.4.7. Расход теплоты на станцию

Учитываем потери в трубопроводах и котельной установке

1.4.8. КПД станции (брутто)

1.4.9. КПД станции (нетто)

Доля электрической мощности, расходуемой на собственные нужды

1.4.10. Расходы топлива

Вид топлива - Ангренский бурый уголь, его низшая теплота сгорания

Расходы натурального и условного топлива

Удельный расход условного топлива нетто


Глава 2. Выбор основного и вспомогательного оборудования

2.1. Выбор турбоустановки.

Мощность турбины КЭС выбирается в соответствии с мощностью блока. Принимаем за прототип турбоустановку К-330-240 производства Ленинградского металлического завода. Описание проектируемой турбины: трёхцилиндровая конденсационная турбина с промежуточным перегревом пара, тремя выхлопами в конденсатор и развитой системой регенеративного подогрева питательной воды. Система регенеративного подогрева питательной воды и основного конденсата состоит из 5 ПНД (2 – смешивающих, 3 – поверхностных), деаэратора и 3 ПВД. Турбина имеет восемь отборов: два – из ЦВД (один из которых, совмещён с «холодной» ниткой промперегрева); четыре – из ЦСД (деаэратор и турбопривод включены в 3-й отбор); два – из ЦНД.

Таблица 2.1.

Параметры проектируемой турбины К-250-240

Мощность номинальная, МВт 250
Начальные параметры пара:
·           давление, МПа 24,5
·           температура, °С 550
Параметры пара после промперегрева:
·           давление, МПа 4,5
·           температура, °С 550
Номинальный расход свежего пара, кг/с (т/ч) 213 (767)

2.2. Выбор парового котла.

Выбор парового котла определяется, главным образом, выбранным типом турбины, суммарной мощностью и режимом работы ТЭС.

Исходными данными для выбора парового котла служат заданные параметры острого пара и промежуточного перегрева, температура питательной воды, тип топлива, а также полученный из расчета тепловой схемы расход пара в голову турбины:

На блочных КЭС производительность котла DПЕ, т/ч, выбирается по максимальному расходу пара в голову турбины D0 с учетом 5% расхода пара на собственные нужды:

Параметры пара на выходе из котла выше, чем перед турбиной, на величину потерь давления и температуры в паропроводах:

;

.

В качестве прототипа выбираем прямоточный котел марки Пп-1000-25-545/545 БТ (П-64) и составляем техническое задание на проектирование котла (табл.2.2.).

Таблица 2.2.

Параметры проектируемого котла

Номинальный расход свежего пара, т/ч 805
Топливо Ангренский бурый
Начальные параметры пара:
·           давление, МПа 25,7
·           температура, °С 556
Параметры пара после промперегрева:
·           давление, МПа 4,5
·           температура, °С 556
Температура питательной воды, °С 278
Высота котла, м 66
Сопротивление, кПа 4,48
4,11
Тип котла Р

Котел предназначен для работы в блоке с турбиной мощностью 250 МВт на низкокалорийных югославских лигнитах и бурых углях ангренского месторождения с широким диапазоном влажности (W=33-44%), зольности (Ар= 8-32%) и содержанием серы (S общ.) до 5,6%.

Котел сверхкритического давления с промперегревом, прямоточный, однокорпусный, закрытой Т-образной компоновки, работает под разряжением. Топочная камера открытая, прямоугольного сечения оборудована 24 щелевыми встречно расположенными горелками и полностью экранирована трубами, образующими выше горелок на боковых стенах газозаборные окна.

Для подогрева воздуха в отдельной шахте вне котла установлен каскадный трубчатый воздухоподогреватель, что исключает возможность коррозии и заноса труб воздухоподогревателя при работе на высокосернистом топливе.

Надежная, устойчивая работа топки котла и его бесшлаковочный режим обеспечиваются достаточно большой по сечению и объему топкой, трехъярусным расположением щелевых горелок по длинным сторонам топки и газовой сушкой топлива.

2.3. Выбор оборудования пылеприготовления.

Процесс пылеприготовления состоит из следующих операций: предварительное грубое дробление угля до кусков размером 150 — 200 мм, улавливание металла, отделение щепы, грохочение и тонкое дробление до кусков размером не более 25 мм, сушка и размол до необходимой тонины.

Качество угольной пыли характеризуется тонкостью помола и влажностью. Показателем тонкости помола считается остаток (в %), полученный после просеивания пыли на сите с ячейками размером 90x90 мкм и обозначаемый как R90. Тонкость помола зависит от реакционной способности угля, характеризуемой выходом летучих фракций Vг; чем выше содержание летучих, тем грубее может быть помол и тем меньше затраты энергии на пылеприготовление.

Влажность пыли Wп влияет на производительность мельницы и экономичность сжигания. Недостаточное подсушивание приводит к забиванию пылепитателей и медленному возгоранию, излишнее мо­жет привести к самовозгоранию пыли и взрыву. Влажность пыли Wп нормируется в пределах 0,5 — 23 % в зависимости от свойств топлива.

Таблица 2.3.

Характеристика топлива - Ангренский Б2, Р

Сернистость, % Влажность, % Зольность, % Выход летучих, %

Теплота сгорания,

МДж/кг

Размолоспособность

Теоретические

объемы, м3/кг

воздуха газов
2.5 34.5 13.1 33.5 13.44 2.1 3.81 4.47

2.3.1. Выбор типа мельниц.

Выбираем мельницы-вентиляторы (МВ) с частотой вращения от 590 до 1470 об/мин. Они применяются для мягких высоковлажных углей. Подсушка топлива выполняется двухступенчатой: до мельницы в специальном сушильном устройстве (шахте) и в самой мельнице. Размол угля происходит в результате ударного действия массивных лопастей крыльчатки, при вращении которой создается давление 1,0 – 1,4 кПа, достаточное для преодоления сопротивления от мельницы до топки.

2.3.2. Выбор схемы пылеприготовления.

Выбираем систему пылеприготовления - замкнутую с прямым вдуванием (рис.2.1.), газовоздушной сушкой. Отработавший после сушки топлива воздух вместе с угольной пылью и выделившимися водяными парами сбрасывается в топку.

Из бункера сырого угля 1 топливо поступает в мельницу 2. Размолотое в мельнице топливо попадает в шахту, которая является гравитационным сепаратором, тонкая пыль через горелку 3 выбрасывается в топку потоком воздуха, а крупные частицы угля возвращаются в мельницу. В схеме отсутствует пылевой бункер, что упрощает и удешевляет установку.

Рис 2.1. Схема пылеприготовления с прямым вдуванием пыли.

1-бункер сырого угля, 2- МВ, 3-горелки, 4- короб горячего воздуха, 5- воздухоподогреватель.

2.3.3. Выбор числа и производительности мельницы.

Число мельниц, установленных на котле, зависит от его производительности и от типа мельниц. Принимаем число мельниц z=6. Расчетная производительность одной мельницы определяется по известному из расчета тепловой схемы расходу топлива на котел Bк=163 т/ч, принятому числу мельниц с учетом коэффициента запаса.


Таблица 2.4.

Характеристика мельницы-вентилятора типоразмера 2120/600/750

Диаметр ротора D=2120 мм
Рабочая ширина лопаток b=600 мм
Частота вращения nэл=750 1/мин
Мощность электродвигателя N=400 кВт
Производительность номинальная Bх=25 т/ч

Пересчет производительности с “характерного” вида топлива

2.4. Выбор тягодутьевых машин.

Для подачи воздуха в топку и создания тяги служат дутьевые вентиляторы и дымососы. В проектируемой схеме энергоблока 250 МВт и работает на угле. Паровой котел имеет негазоплотное исполнение и работает при разрежении. Присосы воздуха по тракту котла увеличивают объем перекачиваемых газов на 30-40% выше теоретических значений. Это приводит не только к перерасходу энергии на собственные нужды, но и снижает экономичность работы котла в целом.

Таблица 2.5.

Присосы воздуха в элементах газовоздушного тракта

Коэффициент избытка воздуха αт 1,2
Присосы воздуха Топочная камера ∆αт 0,05
Cуммарные присосы воздуха в конвективных газоходах первичного и вторичного пароперегревателя, переходной зоны и экономайзера ∆αк.п 0,12
Воздухоподогреватель ∆αвп 0,03
Золоуловители ∆αзу 0,10
Присосы в газоходах между воздухоподогревателем и дымососом ∆αгх 0,01
Присосы в системе пылеприготовления ∆αпл.у 0,25

Расход топлива, по которому выбираются дутьевые вентиляторы и дымососы, определяются с учетом физической неполноты сгорания твердого топлива. Принимаем q4=1%. Тогда, расчетный расход топлива:

2.4.1. Выбор дутьевых вентиляторов.

Дутьевой вентилятор подает холодный воздух в воздухоподогреватель, забирая его из верхней части котельной.

Принимаем температуру холодного воздуха . Производительность вентилятора определяется расходом воздуха, необходимым для горения топлива с учетом коэффициента избытка воздуха в топке и присосов по тракту котла:

Расчетная производительность вентилятора принимается с коэффициентом запаса . Кроме того, вводится поправка на барометрическое давление. Принимаем , число вентиляторов z=2. Расчетная производительность одной машины:

Напор дутьевого вентилятора зависит от сопротивления воздушного тракта. Суммарное сопротивление тракта Hд.в=4,11 кПа. Расчетное значение напора принимается с коэффициентом запаса .

По найденным расчетным значениям производительности и напора определяем типоразмер дутьевого вентилятора (табл.2.6.).

Таблица 2.6.

Характеристики дутьевого вентилятора - ВДН-26-11у.

Подача V, тыс.м³/ч 350/280
Полное давление P, Па 4600/2900
Температура газа t, °C 30
КПД η, % 83
Частота вращения n, об/мин 740/590
Потребляемая мощность N, кВт 630/320

Максимальное снижение КПД при работе с расчетной производительностью 10%

Расчет снижения КПД, при переменной нагрузке

Мощность на валу дутьевого вентилятора определяется по формуле:

Мощность привода берется с коэффициентом запаса , необходимым для преодоления инерции при пуске вентилятора.

2.4.2. Выбор дымососов.

Производительность дымососа определяется объемными расходами газов, уходящих из котла и воздуха, присасываемого в тракт после котла в золоуловителях и газоходах.

Коэффициент избытка воздуха в уходящих газах

Объем уходящих газов равен сумме теоретического объема газов и объема присосов воздуха по тракту котла

Объем присосов за пределами котла

Температура газов перед дымососом

Объемная производительность машины

Принимаем число дымососов, равное числу дутьевых вентиляторов z=2. Тогда расчетная производительность дымососа, с учетом коэффициента запаса β1=1,1:

Напор дымососа принимаем -

С учетом коэффициента запаса β2=1,2 расчетный напор дымососа

 

По оцененным выше производительности и напору выбираем дымосос ДОД-41 (табл.2.7.).

Таблица 2.7.

Характеристики дымососа ДОД-41

Тип

Подача,

тыс. м3/ч

Полное давление, Па Температура газа, °C КПД, % Частота вращения, об/мин. Завод-изготовитель
ДОД-41 1080/1220 3 150/4 100 100 82.5 370

Барнаульский

котельный

Максимальное снижение КПД при работе с расчетной производительностью 10%

Расчет снижения КПД, при переменной нагрузке

При работе с расчетной производительностью существенное снижение КПД, поэтому проектируем дымосос (табл.2.8.).

Таблица 2.8.

Характеристики проектируемого дымососа на основе ДОД-41

Тип

Подача,

тыс. м3/ч

Полное давление, Па Температура газа, °C КПД, % Частота вращения, об/мин.
ДОД-41 890 5,38 100 82.5 370

Мощность на валу дымососа определяется по формуле:

Мощность привода берется с коэффициентом запаса

2.5. Выбор насосов.

Насосы тепловых электростанций как и другие типы машин, служащие для перемещения среды и сообщения ей энергии, характе­ризуются следующими параметрами:

o     объемной производительностью (подачей) Q, м3/с;

o     давлением на стороне нагнетания рн, МПа;

o     плотностью перемещаемой среды ρ, кг/м3, или удельным объе­мом v, м3/кг.

В расчетах тепловой схемы определяется массовый расход воды D, кг/с. Между объемным и массовым расходами существует соот­ношение

Q=D/ρ=Dv.

Напор насоса Dр определяется как разность давлений на стороне нагнетания рн и на стороне всасывания рв:

Dр= рн - рв.

Расчетная мощность привода насоса, Вт, равна

,

где vcp — среднее значение удельного объема воды, м3/кг; hн — КПД насоса, учитывающий гидравлические, объемные и механические потери в насосе. Современные насосы электростанций имеют КПД 0,83—0,85.

Давление нагнетания рн, развиваемое насосом, определяется за­данным давлением в конечной точке тракта ркон, суммарными гид­равлическими сопротивлениями тракта åDрс и геодезическим напо­ром, обусловленным разницей высоты Н между точками перемеще­ния среды:

.

Давление на стороне всасывания рв рассчитывается из условия недопущения вскипания воды при попадании ее на быстровращающиеся лопасти колеса насоса (условие обеспечения бескавитационной работы).

2.5.1. Выбор питательных насосов.

Питательные насосы относятся к числу наиболее ответственных вспомогательных машин ТЭС. Устанавливаем на блок один насос с турбоприводом на 100% производительности и один с электроприводом и гидромуфтой на 50% нагрузки.

Выбор насосов осуществляется по значениям объемной производительности насоса  и напора насоса  м вод.ст.

 – гидравлическое сопротивление прямоточного котла;

 – сопротивление регулирующего клапана питания котла;

 – суммарное сопротивление группы ПВД;

 – сопротивление трубопроводов от питательного насоса до парового котла.

Суммарное гидравлическое сопротивление, которое рассчитывается по формуле:

Плотность среды в прямоточном котле

Для прямоточных котлов давление нагнетания питательного насоса составляет:

Для создания дополнительного подпора на на всасе питательного насоса устанавливают предвключенные бустерные насосы. Давление нагнетания бустерного насоса, является давлением на всасывающей стороне питательного насоса, принимаем равным давлению на выходе из бустерного насоса – .

Тогда можно рассчитать напор питательного насоса:

.

Напор насоса в метрах водного столба:

Производительность питательного насоса

Подача питательного насоса

В качестве основного питательного насоса выбираем насос ПТН-350-950, а в качестве резервного выбираем насос СВПЭ-320-550 (табл.2.9.).

Таблица 2.9.

Характеристики питательных насосов

Тип насоса Подача, м3/ч Напор, м Частота вращения, об/мин. Тип и мощность привода, кВт КПД насоса, % Завод-изготовитель
ПТН-350-950 950 3500 4700 ОК-18ПУ КТЗ 80 АО ЛМЗ
СВПЭ-320-550 600 3200 7500 АГД, 8000 78 АО ЛМЗ

Мощность, потребляемая питательным насосом

2.5.2. Выбор бустерных насосов.

Давление на выходе из бустерного насоса – .

Давление на входе в бустерный насос

Напор, развиваемый бустерным насосом

Производительность бустерного насоса

Подача бустерного насоса

Выбираем насос Д1250-125 (14Д-6), его характеристики приведены в табл.2.10.

Таблица 2.10.

Характеристики бустерного насоса

Тип насоса Подача, м3/ч Напор, м Допустимый кавитационный запас, м Частота вращения, об/мин. Мощность, кВт КПД насоса, %
Д1250-125 (14Д-6) 1250 125-105 7,0 1480 630-500 76

Мощность, потребляемая насосом

2.5.3. Выбор конденсатных насосов.

Конденсатные насосы представляют особую группу энергетических насосов, работающих с минимальным кавитационным запасом. Они обладают более низкой экономичностью, большей металлоемкостью и более высокой стоимостью по сравнению с другими насосами на аналогичные подачи и напоры. Поэтому по возможности число насосов должно быть минимальным.

Общая подача насосов Dк.н, кг/c, рассчитывается по максимальному расходу пара в конденсатор Dк.max с учетом добавочной обессоленной воды, дренажей подогревателей, турбоприводов и пр., подаваемых на всас насосов.

Для блока с прямоточным котлом применяем двухподъемную схему установки конденсатных насосов. При такой схеме КН разделяют на две ступени.

Конденсатные насосы I ступени установлены после конденсатора; они создают давление, достаточное для преодоления гидравлического сопротивления БОУ, трубопроводов и подъем конденсат в смешивающий ПНД (П8).

Давление нагнетания КН I ступени:

Давление на стороне всасывания (с учетом запаса по давлению)

Общая подача КН I ступени

Подача конденсатного насоса

Тогда можно рассчитать напор питательного насоса:

.

Напор насоса в метрах водного столба:

Конденсатные насосы всегда устанавливаются с резервом. Устанавливаем 2 насоса по 100% производительности, один из которых будет находиться в резерве.

Выбираем конденсатный насос КсВ500-85 (табл.2.11.).

Таблица 2.11.

Характеристики насоса КсВ500-85

Тип насоса Подача, м3/ч Напор, м Допустимый кавитационный запас, м Частота вращения, об/мин. Мощность, кВт КПД насоса, %
КсВ500-85 500 85 1,6 1000 154 75

Мощность, потребляемая насосом

Конденсатные насосы второй ступени развивают давление, необходимое для подачи конденсата через ПНД в деаэратор. Используем гравитационный принцип включения двух смешивающих ПНД, поэтому насос между ними не ставится.

Высота, на которую должен быть поднят смешивающий подогреватель П8, над подогревателем П7:

 - суммарное сопротивление группы ПНД;

сопротивление трубопроводов от КН до деаэратора.

Суммарное гидравлическое сопротивление:

Страницы: 1, 2, 3


© 2010 Собрание рефератов