Рефераты

Учебное пособие: Исследование полупроводниковых приборов

Рис.8. Вольтамперная характеристика диода для предварительного расчета


Работа №4

Исследование однооперационного тиристора

Цель работы

Изучение параметров и характеристик тиристора и исследование однофазного управляемого выпрямителя.

Теоретическая часть

Однооперационный тиристор является плоскостным полупроводниковым прибором, который состоит из четырех слоев р1-n1-р2-n2. Тиристор имеет три вывода: анод (А), катод (К), управляющий электрод (УЭ). Принцип действия тиристора рассматривается на четырехслойной структуре, имеющей два вывода. Такая структура называется динистором. Структура динистора приведена на рис.1.

Рис.1. Структура и условное обозначение динистора

На границе слоев образуются p-n-переходы П1, П2, П3. При подключении динистора к источнику прямого напряжения p-n-переходы П1 и П3 смещаются в прямом направлении, а П2 – в обратном направлении. Сопротивление перехода П2 велико и составляет величину порядка 1 МОм, поэтому ток через структуру не протекает. В таком состоянии динистор закрыт. Для того чтобы рассмотреть условия включения структуры, необходимо представить схему замещения четырехслойной структуры двумя трехслойными.

Рис.2. Схема замещения динистора

На схеме замещения определяются слои эмиттеров и коллекторов каждого транзистора. Эмиттер является крайним слоем того p-n-перехода, который смещен в прямом направлении, поэтому эмиттерами являются слои p1 и n2. Коллектор является крайним слоем p-n-перехода, который смещен в обратном направлении, поэтому коллекторами являются слои n1 и p2. На основании схемы замещения определяется ток перехода П2:

.                                                     (1)

Коллекторные токи определяются из уравнения:

.                                                    (2)

Структура динистора разделена на две части, поэтому ток неосновных носителей перехода П2 делится пополам между двумя транзисторами и составляет . С учетом этого замечания выражение (2) представляется в виде:

,

,                                               (3)

где α1, α2 – коэффициенты передачи тока эмиттера.

Выражения (3) подставляются в выражение (1):

.                                                             (4)

В динисторе все слои включены последовательно, поэтому токи Iп2, Iэ1, Iэ2 одинаковые и равны анодному току во внешней цепи Iа:

.                                        (5)

Из выражения (5) определяется анодный ток:

.                                                  (6)

Выражение (6) определяет условия включения четырехслойной структуры:

– наличие тока I'к0;

– (α1 + α2) = 1.                                          (7)

При выполнении условия (7) анодный ток резко возрастает и динистор включается. Пусть напряжение, приложенное к динистору, возрастает. Тогда возрастают токи Iэ1, Iэ2, Iп2 и одновременно возрастают коэффициенты α1 и α2. Необходимо отметить, что в структуре динистора действует положительная обратная связь, так как выходной ток одного транзистора равен входному току другого: Iк1 = Iб2, Iк2 = Iб1 (рис.2). Благодаря обратной связи включение динистора происходит лавинообразно, если выполняется условие (7).

Процесс включения происходит следующим образом. При увеличении анодного напряжения возрастают токи в структуре, а также коэффициенты передачи α1 и α2. Для малых анодных напряжений (α1 + α2) << 1. При некотором анодном напряжении, называемым напряжением переключения, сумма (α1 + α2) приближается к 1 и начинается процесс включения, в процессе которого динистор переходит на диодную ветвь вольтамперной характеристики (рис.3). На участке 0–1 динистор закрыт, а на участке 1–2 происходит его включение.

Под действием обратного анодного напряжения два перехода П1 и П3

Рис.3. Вольтамперная характеристика динистора

смещаются в обратном направлении, следовательно, оба транзистора структуры закрыты. Для того чтобы появился анодный ток, необходимо пробить переходы П1 и П3. На рис.3 обратная ветвь показана до участка пробоя.

Структура однооперационного тиристора и схема прямого включения его приведена на рис.4. В базу транзистора n-p-n задается ток управления, который приводит к увеличению всех токов четырехслойной структуры: Iэ2, Iк2, Iб1, Iк1, Iэ1, Iб2. По сравнению с динистором включение тиристора произойдет при меньшем напряжении переключения Uпк. С возрастанием тока управления Iу напряжение переключения уменьшается.

Рис.4. Структура и схема прямого включения тиристора

Уравнение анодного тока выглядит следующим образом:

.                                        (8)

При больших анодных напряжениях, составляющих сотни вольт, может произойти лавинный пробой перехода П2, что приводит к увеличению концентрации носителей тока, а в выражении (8) появляется коэффициент лавинного размножения носителей М>1:

.                                             (9)

Выключение тиристора происходит по анодной цепи, когда анодный ток уменьшается до тока удержания. Током управления тиристор не выключается, так как анодный ток значительно больше тока управления.

Вольтамперные характеристики анодной цепи тиристора приведены на рис.5. Обратная ветвь характеристики сливается с осью.

 


Рис.5. Вольтамперные характеристики тиристора


Экспериментальная часть

1. Включение тиристора на постоянном токе


Рис.6. Схема включения тиристора на постоянном токе

В работе исследуется тиристор типа Т6-10 с предельным током 6 А. В анодную цепь и цепь управления подаются постоянные напряжения 9 В и 27 В от блока питания (рис.6). Ограничение анодного тока после включения тиристора осуществляется резистором Rн = 120 Ом. Нагрузкой цепи управления является резистор Rу = 75 Ом.

2.     Определение отпирающего тока управления Iу0 и условий выключения тиристора.

Потенциометр RП1 установлен в такое положение, когда напряжение на управляющем электроде равно нулю, т.е. Uу = 0. При помощи потенциометра RП2 установить анодное напряжение 12 В. Регулируя напряжение в цепи управления, добиться включения тиристора. Результаты измерения занести в таблицу. Примерное значение параметров приведено в таблице 1.


Таблица 1 – Измерение параметров включения тиристора

Ua, В

Ia, мА

Iу0, мА

Uу0, В

12 – 0,9 0 – 50 22 1,6

После включения тиристора переключить предел измерения вольтметра V2 на 10 В и замерить прямое падение напряжения на тиристоре Uпр. В таблице 1 это значение равно 0,9 В. Также записать значение анодного тока после включения тиристора. В таблице 1 это значение равно 50 мА.

Уменьшить ток управления до нуля. Убедиться в том, что значение анодного тока не изменяется, т.е. тиристор не выключается. Выключить тиристор по анодной цепи, уменьшая напряжение U2. Записать анодный ток удержания тиристора и анодное напряжение, при котором тиристор выключается.

3.     Снятие характеристики управления.

DUу

 
Снять зависимость Iу = F(Uу) при разорванной анодной цепи, используя схему рис.6. Построить характеристику управления (рис.7), нанести на нее отпирающие значения тока и напряжения Iу0, Uу0. По характеристике управления определить дифференциальное сопротивление  вблизи точки Iу0, Uу0.

4.    

 В

 
Снятие анодных вольтамперных характеристик

Собрать схему, приведенную на рис.8. Подключить входы «Y» и «X» осциллографа к сигналам, пропорциональным соответственно анодному току и напряжению тиристора. Вход «Y» подключается к резистору Rш, напряжение на котором пропорционально току iа. Масштаб по току mi определяется следующим образом: находится масштаб по напряжению по указателю на переключателе, например 20 мВ/см; затем это значение делится на сопротивление шунта: .


Рис.8. Схема включения тиристора на переменном токе:

R1, R2 – делитель напряжения;

Масштаб по напряжению определяется следующим образом: при помощи эталонного сигнала находится масштаб по напряжению на входе «Х», например, 0,6 В/см; затем это значение умножается на коэффициент делителя , равный 4; mu = 0,6 В/см * 4 = 2,4 В/см.

Установить максимальное напряжение в анодной цепи тиристора. Затем, изменяя ток управления, зарисовать несколько анодных вольтамперных характеристик (рис.5). Записать значения токов управления, при которых сняты характеристики. На характеристиках показать напряжения переключения тиристора Uпк.

Зарисовать диодную вольтамперную характеристику тиристора без делителя напряжения R1 – R2. Для этого вход “Х” осциллографа подключить к точкам 6–9. Выставить ток управления больше значения отпирающего тока. По характеристике определить пороговое напряжение Uпор, прямое падение напряжения при максимальном токе Uпр, дифференциальное сопротивление Ri = DUпр / DIпр (рис.9).

5.     Исследование однофазного управляемого выпрямителя.

Схема выпрямителя приведена на рис.3. Делитель R1–R2 отключен. Тиристор управляется постоянным током управления. Зарисовать осциллограммы тока iа, входного напряжения выпрямителя u2, анодного напряжения тиристора ua(uак) и напряжения на нагрузке uн для двух значений тока управления. На рис.10 приведены временные диаграммы работы выпрямителя при токе управления Iу > Iу0, когда тиристор работает в диодном режиме; на рис.11 – при токе управления Iу < Iу0.

Среднее значение выпрямленного напряжения на нагрузке определяется по формуле: . Среднее значение выпрямленного тока: .

Рис.10. Временные диаграммы работы выпрямителя для Iу > Iу0

Рис.11. Временные диаграммы работы выпрямителя для Iу < Iу0

Контрольные вопросы

1.                Как определить отпирающий ток управления тиристора?

2.                Почему с ростом тока управления уменьшается напряжение переключения?

3.                Почему процесс включения тиристора происходит лавинообразно?

4.                Как влияет температура на характеристики управления и анодные?

5.                Можно ли выключить однооперационный тиристор при помощи цепи управления?

6.                Пояснить работу выпрямителя однофазного тока.

7.                Сравнить диапазоны регулирования момента включения тиристора при управлении постоянным током, синусоидальным (амплитудный способ) и импульсным.

Таблица вариантов

№ вар.

U2m, B

Rн, Ом

α № вар.

U2m, B

Rн, Ом

α
1 15 100 30 13 25 150 30
2 20 120 40 14 30 170 40
3 25 140 50 15 35 130 50
4 30 160 60 16 40 180 60
5 35 180 70 17 45 200 70
6 40 200 80 18 50 170 80
7 45 100 90 19 55 130 90
8 50 120 100 20 60 200 100
9 55 140 110 21 20 210 110
10 60 160 120 22 40 220 120
11 15 120 130 23 15 120 130
12 20 130 140 24 20 140 140

Примечания:

1.                Студенты, получившие подвариант А, рассчитывают и строят зависимость Ud = F(α); подвариант Б – рассчитывают и строят зависимость Id = F(α); подвариант В – временные диаграммы u2(t), uн(t), id(t), iу(t).

2.                При расчете принимать Rн=120 Ом.


Работа №5

Исследование дифференциального включения операционного усилителя

Цель работы

Изучение характеристик и параметров дифференциального включения операционного усилителя.

Теоретическая часть

Подключение сигнала Uвх1 аналогично подключению его в инвертирующем усилителе (рис.1). Второй сигнал Uвх2 поступает на неинвертирующий вход в точку 3. Резисторами R5–R7 создается делитель напряжения на этом входе. Из-за идеальности ОУ потенциалы точек 2 и 3 одинаковы, поэтому напряжение в этих точках можно приравнять: U2 = U3. Определение напряжений U2 и U3 показано ниже. При дифференциальном включении операционного усилителя (ОУ) используется два входа усилителя: инвертирующий и неинвертирующий. Для того чтобы усилитель работал на линейном участке амплитудной характеристики, необходимо охватить его отрицательной обратной связью. Обратная связь осуществляется так же, как и в инвертирующем усилителе. Напряжение с точек 6–12 через сопротивление обратной связи Rос1 поступает в точки 2–12. В результате получается параллельная обратная связь по напряжению.

                                                (1)

                                               (2)

                                                            (3)

                              (4)

После преобразования с учетом выражения (4) получается значение выходного напряжения:

          (5)

Согласно полученному выражению выходного напряжения получаются следующие значения масштабных коэффициентов К1 и К2:

; ,                     (6)

.                                       (7)

Пусть Rос1= R4 и R7 = R5, тогда

.                                                      (8)

Если Rос1= nR4 и R7 = nR5, то значение выходного напряжения зависит от значения n:

.                                                 (9)

Вид амплитудной характеристики усилителя зависит от соотношения слагаемых выражения (7), так как может быть инвертирующего вида либо неинвертирующего.

 12

 

Рис.1. Дифференциальное включение операционного усилителя

Экспериментальная часть

1.     Работа усилителя от сигналов постоянного тока.

В схему включить резисторы Rос1 и R7 и подобрать их так, чтобы Rос1 = R4 и R7 = R5. В качестве источников сигналов использовать два источника постоянного напряжения лабораторного стенда.

1.1. Снять зависимость , используя источники постоянных напряжений. Вначале изменять Uвх2 при Uвх1= const, затем изменять Uвх1 при Uвх2 = const.

Изменить значение Rос1 и R7: Rос1= nR4 и R7 = nR5. Подобрать значение коэффициента n по имеющимся значениям сопротивлений. Снять зависимость , используя источники постоянных напряжений.

2.     Работа усилителя от импульсных входных сигналов.

Зарисовать осциллограммы входных и выходных напряжений для разных амплитуд импульсов и времени сдвига импульсов. Примерный вид осциллограмм приведен на рис.2.

0

 

 uвых

 

 uвх1

 

0

 

0

 

0

 

а)

0

 

0

 

б)

Рис.2. Осциллограммы работы дифференциальной схемы включения:

а) ∆t > tи б) ∆t < tи; Dt – промежуток времени между фронтами импульсов

3. Оформление отчета.

По результатам опыта построить характеристики , определить Uн+ и Uн–, параметры усилителя и обработать осциллограммы.


Контрольные вопросы

1.                Что такое инвертирующий (неинвертирующий) вход усилителя?

2.                В какой точке усилителя находится виртуальный ноль?

3.                Почему потенциалы инвертирующего и неинвертирующего входов при дифференциальном включении одинаковы?

4.                Что такое амплитудная характеристика усилителя?

5.                Как определить напряжение на неинвертирующем входе?

6.                Как вычислить масштабные коэффициенты по разным входам усилителя?

7.                Назвать разновидности схем дифференциального включения.

Таблица вариантов

№ вар.

Uвх1, В

Uвх2, В

R4, кОм

Rос1, кОм

R5, кОм

R7, кОм

1 0,5 1,0 0,5 1,0 2,0 3,2
2 0,7 1,2 0,8 1,5 2,7 3,6
3 1,0 1,5 1,0 2,2 3,2 4,7
4 1,2 1,7 1,2 2,4 3,6 2,0
5 1,4 2,0 1,4 2,7 4,7 2,7
6 1,6 0,5 2,0 2,5 1,0 3,2
7 1,8 0,7 2,2 3,6 1,5 3,6
8 0,2 1,0 0,5 3,2 3,2 4,7
9 0,4 1,2 0,8 2,5 3,6 2,0
10 0,6 1,4 1,2 2,4 1,0 2,7
11 0,8 1,6 1,6 3,0 1,4 3,6
12 1,0 1,8 1,4 2,0 1,6 4,7
13 1,2 2,0 1,2 2,7 2,0 5,2
14 1,4 0,2 0,5 1,2 2,2 4,7
15 1,6 0,4 0,8 1,4 2,5 3,6
16 1,8 0,6 1,0 2,2 3,0 2,0
17 2,0 0,8 1,2 3,6 3,6 3,2
18 0,4 1,0 0,5 3,0 1,0 3,6
19 0,6 1,2 0,8 3,2 1,6 4,7
20 0,8 1,4 1,2 2,0 2,0 5,1
21 1,0 0,2 1,4 2,4 2,2 2,0
22 1,2 0,4 1,6 3,6 2,5 2,7
23 1,4 0,6 2,0 4,7 3,0 3,2
24 1,6 0,8 2,2 4,2 3,6 4,7

Примечание: студенты, получившие подвариант А – строят амплитудную характеристику Uвых = F (Uвх2) для Uвх1 = const, Uвх2 = var; подвариант Б – строят амплитудную характеристику Uвых = F (Uвх1) для Uвх1 = var, Uвх2 = const; подвариант В – временные диаграммы Uвх1(t), Uвх2(t), Uвых(t).

Страницы: 1, 2, 3, 4, 5


© 2010 Собрание рефератов