Рефераты

Дипломная работа: Реконструкция электроснабжения г. Барнаула

Определяем расчетные токи продолжительных режимов.

А                                           (6.19)

Определяем максимальный ток с учетом коэффициента перезагрузки

 А                                             (6.20)

Выбираем сечение алюминиевых шин по допустимому току, так как шинный мост, соединяющий трансформатор с КРУ, небольшой длины и находится в пределах подстанции. принимаем двухполосные шины 2(60´10) мм2; Iдоп = 2010 А.

По условию нагрева в продолжительном режиме шины проходят Imax= 1139 А < Iдоп = 2010 А.

Проверим шины на термическую стойкость по формуле

мм2, что меньше принятого сечения.

Проверим шины на механическую прочность. Определим пролет l при условии, что частота собственных колебаний будет больше 200 Гц.

                                                                                (6.21)

откуда                                                                        (6.22)

Если шины положены на ребро, а полосы в пакеты жестко связаны между собой, то по формуле:

J = 0,72b3h = 0,72 × 1 × 6  = 4,32 см4,                                                  (6.23)

тогда                                               (6.24)

м.

Если шины на изоляторах расположены плашмя, то

 см4                                                              (6.25)

м2

l < 1,22 м.

Этот вариант расположения шин на изоляторах позволяет увеличить длину пролета до 1,22 м, т.е. дает значительную экономию изоляторов.

Принимаем расположение пакета шин плашмя, пролет 1,2 м, расстояние между фазами а=0,8 м.

Определяем расположение шин между прокладками по формуле:

                                                            (6.26)

                                                                (6.27)

где  = 7× 106, модуль упругости материала шин;

 см4                                                                                                      (6.28)

 - коэффициент формы;

 = 2b = 2 см.

Массу полосы mп на 1 м определяем по сечению g, плотности материала шин (для алюминия 2,7 × 103 кг/см3) и длине 100 см.

mп = 2,7 × 103 × 6× 1 × 100 = 1,62 кг/м,

тогда

 м

 м.

Принимаем меньшее значение  = 0,51 м, тогда число прокладок в пролете равно

                                                              (6.29)

принимаем = 2.

При двух прокладках в пролете расчетный пролет равен

м                                                                  (6.29)

Определяем силу взаимодействия между полосами по формуле:

 Н/м                     (6.30)

где  = 10 мм.

Напряжение в материале полос определяем по формуле

 МПа                                           (6.31)

где  = момент сопротивления шины относительно оси, перпендикулярной действию усилия

см3                                                                 (6.32)

Напряжение в материале шин от взаимодействия фаз определяем по формуле:

 МПа           (6.33)

где  - момент сопротивления пакета шин.

 см3                                                                                           (6.34)

 МПа, что меньше sдоп = 75 МПа. Таким образом, шины механически прочны.

Выбираем опорные изоляторы ОФ-10-2000УЗ Fразр= 20000 Н. Сила, действующая на изолятор равна

                                                               (6.35)

где a – расстояние между осями полос

      а = ап = 26 = 2×0,01 = 0,02

       - поправочный коэффициент на высоту шины, принимаем равным 1,03 ().

Н < 0,6Fразр = 0,6× 20000 = 12000 Н.

Проходной изолятор выбираем такого же типа.


7 Выбор трансформатора СН

Мощность трансформатора собственных нужд (СН) выбирается по нагрузкам собственных нужд с учетом коэффициента разновременности Кр. Мощность трансформаторов СН на подстанциях без постоянного дежурного персонала должна удовлетворять требованию

                                                                                    (7.1)

По установленной мощности определяем нагрузку собственных нужд. Расчет производим в табличной форме, данные заносим в таблицу 7.1.

Расчетная нагрузка при коэффициенте спроса Rc = 0,75

 кВА                (7.2)

при отключении одного трансформатора ТМ-63 кВА (приняли к установке два) второй будет загружен на 123,68/63 = 1,92 или 92%, что недопустимо. Принимаем к установке два трансформатора ТМ-100.

Загрузка в аварийном режиме 24%, что удовлетворяет требовании. ПУЭ.

Таблица 7.1 – Нагрузка собственных нужд подстанции

Вид потребителя Установленная мощность Cos j Sin j Нагрузка
Единицы кВт Всего кВт

Pуст, кВт

Qуст, квар

1

2

3

4

5

6

7

Охлаждение ТРДН-25000/110 - 2,5 0,85 0,62 29,6 2,12
Подогрев шкафов КРУ-10 1´4 44 1 0 44 -
Подогрев приводов разъединителей, отделителей, короткозамыкателей 0,6´8 48 1 0 4,8 -
Освещение и вентиляция ПС 7 7 1 0 7 -
Подогрев релейного шкафа 1´24 24 1 0 24 -
Отопление пункта управления - 50 1 0 50
Отопление помещения для ремонтных бригад

8 Выбор защиты и автоматики

Трансформаторы подстанции подключены к ВЛ через выключатели, с помощью которых поврежденный трансформатор должен отключиться от сети в безтоковую паузу. Отключение осуществляется с помощью защиты трансформатора, реагирующей на к.з. в зоне ее действия, вызываемое отключением короткозамыкателя на стороне высшего напряжения трансформатора.

В качестве релейной защиты принимаются следующие виды защиты: продольная дифференциальная, газовая, максимальная токовая с пуском по напряжению, максимальная токовая от токов, обусловленной перезагрузкой.

Дифференциальная защита выполнена на реле ДЗТ-11, которое благодаря наличию тормозной обмотки обеспечивает несрабатывание защиты от токов небаланса от внешних к.з. Первичный ток срабатывания защиты с реле ДЗТ определяют только по условию отстройки от броска тока намагничивания при включении ненагруженного трансформатора под напряжение. Расчет защиты приведен в таблице.

Относительная погрешность, обусловленная регулированием напряжения по стороне ВН, принята равной половине суммарного диапазона регулирования напряжения. Е = 0,1 полная погрешность трансформаторов тока.

tg j - тангенс угла наклона к горизонтальной оси касательной, проведенной из начала координат к тормозной характеристике реле, соответствующей минимальному торможению. Для ДЗТ-11 tga=0,87. Наименьший коэффициент чувствительности продольной дифференциальной защиты трансформаторов должен быть около двух.


Таблица 8.1 – Расчет продольной нагрузки дифференциальной защиты трансформатора ТРДН 25000/110

Величины Расчетная формула Расчетное значение

1

2

3

1 Номинальная мощность защищаемого трансформатора, кВА

SН

25000

2 Номинальное напряжение обмоток защищаемого трансформатора, кВ

ВН

НН

UВН

UНН

110

10

3 Относительная погрешность, обусловленная регулированием напряжения на стороне ВН

DU

0,08

4 Схема соединения трансформаторов тока:

на стороне ВН

на стороне НН

D

Y

5 Коэффициент трансформации трансформаторов тока:          

на стороне ВН

на стороне НН

nВН

nНН

60

400

6 Значение тока трехфазного к.з. на выводах НН, приведенное к напряжению ВН, кА

IK

0,50
Определение установок и чувствительности защиты
7 Номинальный ток защищаемого трансформатора на стороне ВН, А

А

8 Первичный ток срабатывания по условию отстройки от бросков тока намагничивания

= 1,5×131,3=196,95 А

9 Ток срабатывания реле, приведенный к стороне ВН, А

А

10 Расчетное число обмоток реле, включаемых в плечо защиты со стороны ВН

11 Принятое число витков обмотки реле, включаемых со стороны ВН

WВН = 17

12 Расчетное число витков обмотки реле, включаемых со стороны НН

13 Принятое число витков обмотки реле, включаемых со стороны НН

WHH – ближайшее число

WHH = 18

14 Расчетное число витков тормозной обмотки по условию отстройки от тока небаланса при к.з. на стороне НН

15 Принятое число тормозной обмотки

WT > WTрасч

WT = 9

16 Минимальное значение тока в реле при двухфазном к.з.

А

17 Минимальное значение коэффициента чувствительности защиты

Газовая защита. При повреждении внутри бака трансформатора происходит выделение газа за счет разложения масла и изолирующих материалов. При большом количестве газа, выделяющегося в течение малого времени, резко увеличивается давление в баке. Масло приходит в движение и вытесняется из бака в сторону расширителя.

Таким образом, появление газа, увеличение давления или движение масла может явится критерием, позволяющим определить факт повреждения.

Газовую защиту выполним с помощью реле В1=80/0 с двумя пластмассовыми поплавками. Реле имеет сигнальный и комбинированный отключающий орган из двух элементов – поплавкового и лопастного, установленного поперек оси маслопровода. К подвижным элементам прикреплены постоянные магниты, поворот которых приводит к замыканию магнитоуправляемых контактов. Кроме того,  в баке РПН дополнительно устанавливаем струйное реле URF 25/10, у которого имеется только один отключающий элемент в виде пластины. Источником оперативного тока для газовой защиты выбираем ТСН.

Максимальная токовая защита (МТЗ). Защита устанавливается со стороны основного питания.

Кратковременные перегрузки по току приводят к необходимости загрублять МТЗ. Одним из критериев, по которому режим перегрузки можно отличить от режима к.з. является разная степень снижения напряжения на шинах подстанции. Пр к.з. снижение напряжения является большим. В схеме защиты применена схема с комбинированным пуском от реле обратной последовательности и минимального реле напряжения (шина РНФ-1м). Ток срабатывания МТЗ отстраивается от тока нагрузки в нормальном режиме

,                                                                           (8.1)

где КН коэффициент надежности, для РТ-40, КН = 1,1;

     КВ – коэффициент возврата реле, КВ = 0,8;

     Кс.з. – коэффициент самозапуска нагрузки, Кс.з.= 1;

     Iраб – рабочий ток линии после устранения к.з.,

 А.

Расчетный ток срабатывания реле

,                                                                                 (8.2)

где Ксх коэффициент схемы. При соединении трансформаторов тока в треугольник Ксх = ;

      nт – коэффициент трансформации, nт = 60.

 А.

Напряжение срабатывания фильтра реле обратной последовательности РНФ-1м выбираем из условия обеспечения отстройки от напряжения небаланса фильтра в нормальном режиме.

 кВ                                                   (8.3)

В                                                                (8.4)

Напряжение срабатывания реле минимального напряжения определяем из условия обеспечения возврата реле после отключения внешнего к.з. по выражению

,                                                                                (8.5)

,                                                                                  (8.6)

где Umin – минимальное напряжение в месте установки трансформатора.

,                                                                            (8.7)

кВ,

кВ,

В.

Защита от перегрузки. Для защиты от перегрузки предусматриваем максимальную токовую защиту от токов, обусловленных перегрузкой, с действием на сигнал. Максимальную токовую защиту устанавливаем на каждой расщепленной обмотке трансформатора.

Ток срабатывания защиты от перегрузки определяем по выражению

,                                                                            (8.8)

где КВ коэффициент возврата, КВ = 0,85;

      КН – коэффициент надежности, КВ = 1,05.

А

Ток срабатывания реле определим по выражению

,                                                                                (8.9)

А


9 Технико-экономический расчёт

 

9.1 Организация и управление энергохозяйством

Энергохозяйство промышленного предприятия (ПП) представляет собой вспо­могательный и обслуживающий участок ПП, являющийся элементом энергетической системы, совокупностью процессов производства, преобразования, распределения и по­требления всех видов энергоресурсов. Кроме этого энергохозяйство призвано осуществ­лять ремонт, эксплуатацию и монтаж энергетического оборудования. В производствен­ном отношении энергохозяйство ПП можно подразделить на следующие элементы: об­щезаводское и цеховое.

Правильная организация и деятельность энергохозяйства при квалифицирован­ном управлении способна повысить эффективность производства следующими спосо­бами:

-     снижение затрат на энергоснабжение,

-     улучшение использования энергоустановок,

-     экономия и рациональное использование энергоресурсов.
Цели управления деятельностью энергохозяйства:

-     надёжное и экономичное снабжение производства всеми необходимыми ви­дами энергии в потребном количестве,

ремонтно-эксплуатационное обслуживание,

-     монтаж и наладка оборудования,

-     комплексная механизация и автоматизация производственных процессов,

-     рациональное использование энергоресурсов.

Производительность труда и затраты производства зависят непосредственно от характера разделения труда внутри энергохозяйства и его производственной   структу­ры, которая должна быть динамичной и изменяться в соответствии с развитием пред­приятия.

Единое руководство необходимое для нормального функционирования предпри­ятия с большим количеством разнообразных энергоустановок осуществляется главным энергетиком и возглавляемым им отделом главного энергетика (ОГЭ), а непосредствен­но на местах руководством цехов.

ОГЭ работает в тесном взаимодействии с отделами капитального строительства, главного механика, технолога и т.д.

Главный энергетик, непосредственно руководящий ОГЭ, осуществляет также техническое и методологическое руководство службами цеховых энергетиков, надзор за эксплуатацией оборудования и использованием на предприятии энергоресурсов. При этом он руководствуется действующим законодательством, приказами, указаниями ми­нистерства энергетики, ПТБ, ПУЭ и т.п. Обычно главный энергетик назначает двух за­местителей, которые осуществляют техническое и оперативное руководство.

В данной работе ставится целью провести приближённый экономический расчёт системы электроснабжения завода на напряжении выше 1000 В.

9.2 Определение капитальных вложений

Капитальные затраты в систему электроснабжения имеют следующие составные элементы [17]:

                                                                                (9.1)

где KЛЭП капиталовложения на сооружение линий электропередач (воздушных или кабельных),

       ККТП капиталовложения на установку трансформаторных подстанций, распределительных устройств управления, релейной защиты и автоматики (ОРУ, ЗРУ, КРУН),

       КВА капиталовложения на установку высоковольтной аппаратуры.

Таблица 9.1 - Расчет капиталовложений по проекту

Элемент системы Кол-во единиц Стоимость элементов, тыс. рублей

 

Оборудование Монтаж Строительство Полная

 

1 2 3 4 5 6

 

Силовой тр-р ТДН- 10000/110 2 2000 400 1000 6800

 

Выключатель ВМТ-110Б 3 650 130 325 3315

 

Трансформатор тока (110 кВ) 15 100 20 50 2550

 

Тр-р напряжения (110 кВ) 6 1000 200 500 10200
Разрядник (РВС-20) 4 105 21 53 714
Разрядник (РВМГ- 110) 6 210 42 105 2142
Ячейка КРУ (с ТСН) 2 180 36 90 612
Ячейка КРУ (с ВМПП) 16 23 5 12 640
Ячейка КРУ (с НАМИ) 2 37 7 19 126
КТП- 10/0,4 (2-400) 1 184 21 52 177
КТП- 10/0,4 (1-630) 14 104 42 104 2829
КТП- 10/0,4 (2-630) 1 208 24 60 204
КТП- 10/0,4 (2- 1000)  3 240 48 120 5712
КТП- 10/0,4 (2- 1600) 3 280 56 140 476

КЛ  ААШв (в км)

50

70

120

240

4,7

5,2

0,7

2,5

160

220

285

480

229 573 5602
Итого: - - - - 38342

 

9.3 Определение годовых эксплуатационных издержек

Годовые эксплуатационные издержки определяются по формуле:

,                                                                             (9.2)

где ИА - ежегодные амортизационные отчисления капитальных затрат,

,                                                                                     (9.3)

где рАi – норма амортизационных отчислений для i-х элементов системы электроснабжения (рА.ГПП=9,4%, рА.КТП=10,4%, рА.КРУ=6,3%, рА.КЛЭП=2,4%),

          Кi – капиталовложения на сооружение i-х элементов системы электроснабжения (таблица 9.1):

;

ИЭР - издержки на текущую эксплуатацию и ремонт сетей и электрооборудования,  

,                                                                                         (9.4)     где рЭРi – норма отчислений на эксплуатацию и ремонт для i-х элементов системы электроснабжения (рЭР.ГПП = 3%, рЭР.КТП = 4%, рЭР.КРУ = 2%, рЭР.КЛЭП = 1,5%):

;

СЭ - стоимость потерь электроэнергии в сетях и оборудовании:

,                                                                                (9.5)

где      ∆W - потери электроэнергии:

,                                                                 (9.6)

где        ∆WТ – потери в трансформаторах ГПП:

,                                                                     (9.7)

 где        ∆РХХ активные потери холостого хода (∆РХХ=18 кВт),

Т – время работы приемника (Т = 8760 ч.),

∆РКЗ –  активные потери короткого замыкания (∆РКЗ=85 кВт),

t – время максимальных потерь (t=3000ч),

∆WС – потери энергии в распределительных сетях:

,                                                                         (9.8)

где       рС - потери в электрических распределительных сетях (рС=6%: 4% - в сетях 10 кВ, 2% - в сетях 0,4 кВ),

Wгод – годовое потребление электроэнергии:

,                                                                                  (9.9) где          РР – расчётная мощность предприятия (РР=29108 кВт),

;

∆WС.Н. – расход электроэненргии на собственные нужды:

,                                                                            (9.10)  где РС.Н. – мощность потребителей собственных нужд подстанции (РС.Н.=345 кВт),

 - удельная стоимость потерь электроэнергии (при ТМ =5000 ч., t=3000ч. удельная стоимость потерь составляет  = 0,19 руб./кВт·ч)

.

Таблица 9.2 - Расчёт ежегодных отчислений

Элементы

Ра, %

Фа, тыс.руб.

Рэр, %

Фэр, тыс.руб.

ГПП 110/бкВ 9,4 2418 3 846,6
ЦТП 10/0,4 кВ 10,4 602,2 4 310,1
КРУ 10кВ 6,3 86,2 2 39,2
КЛЭП 10кВ 2,4 134,5 1,5 8,2
Итого: - 3120,5 - 1204,1

 


9.4 Определение численности обслуживающего персонала

Планирование использования рабочего времени осуществляется составлением балансов рабочего времени отдельно по группам рабочих [17].

Таблица 9.3 - Баланс использования рабочего времени рабочего

Статьи баланса Обозначение Расчетная величина

 

Эксплуатац. персонал Ремонт, персонал

 

дней ч дней ч

 

1 2 3 4 5 6

 

Календарный фонд рабочего времени

ТК

365 - 365 -

 

Нерабочие дни (праздничные и выходные) для текущего года

tпр.в.

62 434 107 856

 

Плановые целосменные невыходы, вклю­чая:

tuc

- - - -

 

Номинальный фонд рабочего времени

ТН = ТК - tпр.в.

303 2121 258 2064
Плановые целосменные невыходы, включая:

tцс

24 168 24 192
- основной и дополнительный отпуска 10,6 74 9,0 72

- по болезни, % от Тн

3,5· ТН /100

1,5 11 1,3 10

- в связи с выполнением государственных обязанностей, % от Тн

0,5· ТН /100

1,5 11 1,3 10

Плановые внутрисменные потери (сокращенный рабочий день), %  от Тн

tвс= 0,5· ТН /100

265,4 1858 222,4 1779
Эффективный фонд рабочего времени

ТЭ = ТН - tцс - tвс

0,99 6,96 0,99 7,95
Средняя продолжительность рабочего дня

tдн=ТЭ /(ТН tцс)

0,88 - 0,86 -

Страницы: 1, 2, 3, 4, 5, 6, 7


© 2010 Собрание рефератов