Рефераты

Дипломная работа: Источник бесперебойного питания мощностью 600 Вт

          Чим гірші характеристики конденсатора вхідного фільтра, тим  більше енергію ВЧ струму буде забирати блок із силової лінії, що приведе до виникнення кондуктивних синфазних електормагнітних завад.

          Другим основним джерелом шуму є контур, що складається з вихідних діодів, конденсатора вихідного фільтра і вторинних обмоток трансформатора. Між цими компонентами протікають трапецеподібні струми великої амплітуди. Конденсатор вихідного фільтра і випрямляч необхідно розміщувати як можна ближче до трансформатора; для мінімалізації випромінюваного струму. Це джерело також створює синфазні кондуктивні завади, головним чином, на вихідних лініях джерела живлення.

Фільтри кондуктивних електромагнітних завад.

         

          Існує два типи вхідних силових шин. Силові шини постійного струму – це однопровідні силові з’єднання, друге плече живлення яких формує заземлення. Іншим типом вхідного з’єднання є двох або трьохпровідна система живлення від мережі змінного струму. Проектування фільтру ЕМ завад для систем постійного струму здійснюється в основному в вигляді простого LC-фільтра. Всі завади між одним силовим проводом і замиканням через „землю” є синфазними. Фільтр постійного струму, значно більш складний, оскільки враховує паразитні характеристики компонентів.

          Вхідний фільтр кондуктивних ЕМ завад призначений для утримання ВЧ кондуктивного шуму в середині корпусу. Фільтрація ліній входу/виходу також важлива для захисту від шуму внутрішніх схем (наприклад мікропроцесорів, АЦП, ЦАП).

Проектування фільтра синфазних завад.

          Фільтр синфазних завад відфільтровує шум, що створюється між двома лініями живлення (H1 і H2). Схема такого фільтру приведене нижче на рис.1.5.11.

         

Рис. 1.5.11.  Фільтр синфазних завад.

У фільтрі синфазних завад обмотки котушки індуктивності знаходять в фазі, але змінний струми, що протікають через ці обмотки – у протифазі. У результаті для тих сигналів, що співпадають чи протилежні по фазі на двох лініях електроживлення, синфазний потік всередині сердечника урівноважується.

          Проблема проектування фільтра синфазних завад заклечається в тому, що при високих частотах (коли власне і потрібна фільтрація) ідеальні характеристики компонентів спотворюються через паразитні елементи. Основним паразитним елементом є міжвиткова ємність самого дроселя. Це невелика ємність, яка існує між всіма обмотками, де різниця напруг (В/виток) між витками веде себе подібно  конденсатору. Цей конденсатор при високій частоті діє як шунт навколо обмотки і дозволяє ВЧ змінному протікати в обхід обмоток. Частота, при якій це явище є проблемою, вища частоти авторезонансу обмотки.

          Між індуктивністю самої обмотки і цією розподіленою міжвитковою ємністю формується коливальний контур. Вище точки авто резонансу вплив ємності стає більшим від впливу індуктивності, що знижує рівень затухання при високих частотах.

Частотна характеристика фільтра зображена на рис. 1.5.12.

Подпись: Затухання, дБ

Рис. 1.5.12.          Частотна характеристика фільтра.

Цей ефект можна зменшити, використавши Cx більшої ємності. Частота авторезонансу є тією точкою в якій проявляється можливість найбільшого затухання для фільтра. Таким чином, шляхом вибору методу намотки обмоток індуктивності, можна розмістити цю точку поверх частоти, яка потрібна для найкращої фільтрації.

          Щоб почати процес проектування необхідно виміряти спектр не фільтрованого кондуктивного шуму або прийняти по відношенню до нього деякі припущення. Це необхідно для того, щоб знати яким повинно бути затухання і на яких частотах.

          Приймемо, що нам необхідно 24дБ затухання на частоті переключення перетворювача напруги.

          Визначимо частоту зрізу характеристики фільтра:

,

 де Gζ – затухання;

,

          де: fc­ – бажана частота зрізу характеристики фільтра, fsw- робоча частота перетворювача напруги. У нашому випадку fsw=100кГц, затухання Gζ= -24дБ.

Вибір коефіцієнта затухання

          Мінімальний коефіцієнт затухання (ζ) не повинен бути менше 0,707. Менше значення приведе до „звону” і не дасть менше 3дБ затухання на частоті зрізу характеристики.

Розрахунок початковий значень компонентів

         

,

де: ζ – коефіцієнт затухання, ζ=0,707, RL =50Ом - імпеданс лінії,

;

          Приймаємо С≈0,1мкФ 400В.

Приймаємо  Сх=0,22мкФ400В.  Дані конденсатори розміщені між лініями електроживлення. Вони повинні витримувати напругу 250 В та будь – які  скачки напруги

Величину Су – конденсаторів, які розміщені між кожною фазою та „землею” і повинні витримувати високі напруги ≈2500 В вибирають на декілька порядків меншою Су ніж Сх. Це пов’язано з тим, що найбільша ємність конденсатора, доступна при номінальній напрузі 4 кВ, складає 0,01 мкФ. Приймаємо Су=2,2 нФ.

Оскільки сумарна ємність вибраних конденсаторів більша за розраховану, то можна припустити, що фільтр буде забезпечувати мінімуму 60 дБ затухання при частотах в діапазоні від 500 кГц до 10 МГц.

Розрахункова схема фільтру підходить як для вхідного так і для вихідного кола:

Рис. 1.5.13.  Вхідний фільтр ЕМ завад.

L5=L=450 мкГн

С55=С58=Сх=0,22 мкФ400 В

С54=С56=Су=3,3 нФ3 кВ.

Рис.1.5.14. Вихідний фільтр ЕМ завад.

L6=L=450 мкГн

С54=С56=Су=3,3 нФ3 кВ.

С57=С59=Сх=0,22 мкФ400 В

1.6. Обґрунтування вибору елементів схеми.

Джерело безперервного живлення повинне забезпечувати цілодобову роботу будь-якого пристрою, що підключений до нього, із збереженням вихідних параметрів, тому до нього висуваються жорсткі вимоги, як до конструкції так і до вибору елементів схеми.

Умовно елементи схем можна поділити на елементи загального застосування і спеціальні.

Елементи загального застосування є виробами масового виробництва, тому вони піддалися досить широкій стандартизації. Стандартами і нормами встановлені техніко-економічні і якісні показники, параметри і розміри. Такі елементи називають типовими. Вибір типових елементів проводиться по параметрах і характеристикам, що описують їх властивості як при нормальних умовах експлуатації, так і при різних впливах (кліматичних, механічних і ін.).

Основними електричними параметрами є: номінальне значення величини, характерної для даного елемента (опір резисторів, ємність конденсаторів, індуктивність котушок і т.інш.) і межі припустимих відхилень; параметри, що характеризують електричну міцність і здатність довгостроково витримувати електричне навантаження; параметри, що характеризують втрати, стабільність і надійність.

Основними вимогами, якими потрібно керувати при проектуванні радіоелектронної апаратури, є вимоги по найменшій вартості виробу, його високій надійності і мінімальним масогабаритним показникам. Крім того, при проектуванні важливо збільшувати коефіцієнт повторюваності електрорадіоелементів. Виходячи з перерахованих вище критеріїв зробимо вибір елементної бази приладу.

1.6.1. Вибір резисторів.

При виборі резисторів перш за все звертаємо увагу на їх габарити, вартість та надійність, що зумовлена напрацюванням на відмову. А виходячи з того що сучасні інтегральні технології дуже просунулися, порівняно з минулими роками, ми маємо резистори, які характеризуються: високою надійністю та низькою собівартістю, компактними розмірами та великою різновидністю.

Порівняємо декілька типів резисторів.

Товстоплівкові резистори з допуском ±5%.

Технічні параметри.                                                                 Таблиця 1.6.1

Параметри Значення
Тип RC01 RC11 RC21 RC31 RC41
Типорозмір корпусу 1206 0805 0603 0402 0201
Діапазон номіналів опорів 1 Ом …1 МОм

10Ом…1

МОм

Допуск ±5%
Максимальна потужність 0.25 Вт 0.125Вт 0.1 Вт 0.063Вт 0.005 Вт
Максимальна робоча напруга 200 В 150 В 50 В 15В
Діапазон робочих температур -55 … +155ºС

Товстоплівкові резистори з допуском ±1%.

Технічні параметри.                                                                Таблиця 1.6.2

Параметри Значення
Тип RC02H RC02G RC12H RC12G RC22H
Типорозмір корпусу 1206 1206 0805 0805 0603
Діапазон номіналів опорів 1 Ом …1 Мом

10Ом…1

МОм

Допуск ±1%
Максимальна потужність 0.25 Вт 0.25Вт 0.125Bт 0.125Вт 0.1 Вт
Максимальна робоча напруга 200 В 150 В 50В
Діапазон робочих температур -55 … +155ºС

Типорозміри SMD резисторів.                                                Таблиця 1.6.3

Типорозмір корпусу L (мм) W (мм) T (мм) Масса (г)
0201 0.6 0.3 0.3 0.02
0402 1.0 0.5 0.35 0.06
0603 1.6 0.8 0.45 0.2
0805 2.0 1.25 0.55 0.55
1206 3.2 1.6 0.55 1.0

Виходячи з таб.1.6.1. … таб.1.6.3. в якості опорів обираємо товстоплівкові резистори RC01 та RC02H з типорозміром корпусу 1206 (рис.1.6.1).

Потужні SMD резистори. Технічні параметри.                      Таблиця 1.6.4

Параметри Значення
Тип XC0204 RWN5020 RWP5020
Типорозмір корпусу SMD MELF SMD POW SMD POW
Діапазон номіналів опорів 0.22Ом…10МОм 0.003Ом…1МОм 1Ом…0.1МОм
Допуск 0.1%...5% 1;2;5% 1;5%
Максимальна потужність 1 Вт 1.6Вт 1.6Bт
Максимальна робоча напруга 300 В
Діапазон робочих температур -55 … +155ºС

Виходячи з таб.1.6.4. в якості потужних опорів обираємо резистори RWN5020 з типорозміром корпусу SMD POW (рис.6.2.б).

А = 1.5 мм.

В = 1.2 мм.

С = 4.7 мм.

                                                                             

Рис.1.6.1. Рекомендоване розположення при пайці резисторів RC01, RC02H типорозміру 1206.

а)

б)

Рис.1.6.2. Типорозміри корпусів резисторів:

а) SMD MELF ; б) SMD POW

В якості підстроювальних опорів вибираємо резистори PVZ3A фірми Murata рис. 1.6.3.

              Підстроювальні резистори PVZ3A.

              Технічні параметри.                                     Таблиця 1.6.5

Функціональна характеристика Лінійна
Номінальна потужність 0.1Вт при 50°С
Максимальна робоча напруга 50V
Робочий діапазон температур -25°C…85°C
Допустиме відхилення номінального значення опору ±30%
Кут повороту 230°± 10°
Діапазон номінальних опорів 100Ом…2МОм
Температурний коефіцієнт опору (ТКО) 500ppm/°C
Зусилля повороту 20-200 г./см

Рис.1.6.3. Типорозмір підстроювальних резисторів PVZ3A.

1.6.2 Вибір конденсаторів.

При виборі конденсаторів, враховуючи умови експлуатації виробу, а також електричні параметри,  будемо керуватися тим, що для конденсаторів  висуваються  наступні вимоги:

- найменша маса;

- найменші розміри;

- відносна дешевизна;

- висока стабільність;

- висока надійність;

Візьмемо для розгляду декілька типів конденсаторів, і зробимо порівняння відносно класу діелектрика у вигляді таблиці.

SMD конденсатори. Технічні параметри.                             Таблиця 1.6.6

Клас діелектрика Клас 1 Клас 2
Типорозмір корпусу 0402…1210 0402…2220

Номінальна постійна напруга

50В; 200В;500В;1кВ;3кВ 25В; 50 В; 100В; 200В; 500В;1кВ;2кВ;3кВ
Діапазон ємностей 1 пФ…10 нФ;1нФ…10мкФ 1 пФ…1 нФ; 1нФ…10мкФ
Допуск ємностей (в % чи пФ)

При Сн<10 пФ:

±0.1 пФ

±0.25 пФ

±0.5 пФ

При Сн≥10 пФ:

±1 %

±2 %

±5 %

±10 %

±5 %

±10 %

±20 %

Максимально відносна девіація ємності ΔС/С - ±15 %
Діапазон робочих температур -55…+125ºС -55…+125ºС
Максимальне значення тангенса купа втрат tg δ

<1.10-3

<25.10-3

<35.10-3 (16В)

Опір ізоляції при 25 ºС

> 105 МОм

> 105 МОм

при 125 ºС -

> 104 МОм

Постійна часу при 25 ºС > 1000 с > 1000 с
при 125 ºС > 100 с > 100 с

Типорозміри SMD конденсаторів.                                         Таблиця 1.6.7.

Розмір

мм

0402

1005

06032

1608

0805

2012

1206

3216

1210

3225

l 1.5±0.1 1.6±0.15 2.0±.02 3.2±0.2 3.2±0.3
b 0.5±0.05 0.8±0.1 1.25±0.15 1.6±0.15 2.5±0.3
s 0.5±0.05 0.8±0.1 1.35max 1.3max 1.7max
k 0.1-0.4 0.1-0.4 0.13-0.75 0.25-0.75 0.25-0.75

Виходячи з таб.1.6.6. в якості SMD конденсаторів  обираємо конденсатори  з діелектриком 1 класу, типорозміром корпусу 1206 (рис.1.6.4.).

              

   А = 1.5 мм.

   В = 1.2 мм.

   С = 4.7 мм.

Рис. Рекомендоване розташування при пайці

            SMD конденсаторів типорозміру 1206.

Вибираємо електролітичні конденсатори фірми Hitano,  для звичайного монтажу серії ECR.

Серія ECR:

діапазон напруг 6.3…100В 160…460В
діапазон ємностей 0.47…10000мкФ 0.47…220мкФ
температурний діапазон -40…+85°С -25…+85°С
струм втрат <0.01CU <0.03CU
розкид ємностей ±20% при 20°С, 120Гц

Діелектричні втрати (tgs), не більше

U,B 16 25 35 50 63 100 200 350 400
tgs(D4-6.3) 0.16 0.14 0.12 0.1 0.1 0.08 0.18 0.2 0.2

Стабільність при низьких температурах (відношення імпедансів на частоті 120Гц).

U,B 16 25 35 50 63 100 200 350 400
Z(-25°C)/ Z(+20°C) 2 2 2 2 2 2 2 2 2
Z(-40°C)/ Z(+20°C) 4 4 3 3 3 3

Типорозміри електролітичних конденсаторів.                      Таблиця 1.6.8

мкФ/B 16 25 35 50 63 100 200 350 400
1 5´11 5´11 5´11 5´11 6´11 6´11
2.2 5´11 5´11 5´11 6´11 6´11 8´12
4.7 5´11 5´11 5´11 8´12 8´12 10´13
10 5´11 5´11 5´11 5´11 5´11 6´11 10´16 10´13 10´13
22 5´11 5´11 5´11 5´11 6´11 6´11 10´21 10´13 10´16
33 5´11 5´11 5´11 6´11 6´11 8´12 13´21 10´21 10´21
47 5´11 5´11 5´11 6´11 6´11 10´13 13´21 13´21 13´26
100 5´11 6´11 6´11 8´12 10´13 10´21 16´26 16´32 16´32
220 6´11 8´12 8´14 10´13 10´16 13´26 18´36 18´41
330 8´12 8´14 10´13 10´17 10´20 13´26
470 8´12 8´14 10´16 13´21 13´26 16´26
1000 10´16 10´21 13´21 13´26 16´25 18´41
2200 13´21 13´21 16´26 16´36 18´36
3300 13´26 16´26 16´32 18´36 22´41
4700 16´26 16´32 18´36 22´41 25´41

Рис.1.6.5. Габаритні розміри електролітичних конденсаторів.

D 5 6 8 10 13 16 18 22 25
P 2.0 2.5 3.5 5.0 5/0 7.5 7.5 10 12.5
d 0.5 0.5 0.5 0.6 0.6 0.8 0.8 1.0 1.0

1.6.3 Вибір індуктивностей та трансформаторів

Вибираємо моточні вироби фірми Epcos.

У якості дроселів, для фільтрів по живленню, із таблиці виберемо дроселі типу DB36-10-47, DST4-10-22, FMER-K26-09.

Котушки індуктивності. Технічні параметри.                   Таблиця 1.6.9

Тип

Індуктивність

мкГн

Q

Тест. частота

Гц

Опір

Ом

Струм тип.

А

Струм нас.

А

L Q
DB36-10-47 150±20% 46 100К 2.520М 0.02 12.80 14.20
DST4-10-22 47±20% 42 100К 2.520М 0.01 12.20 15.50
FMER-K26-09 60±20% 56 100К 2.520М 0.12 8.2 10.4

Трансформатори вибираємо типу TS40-15-2, KERBIP-2-K20, TS300-12-K28, TS12-300-K32  діапазон робочих температур -40…+45оС.


1.6.4 Вибір активних елементів


Вибираємо транзистори фірми STMicroelectronics табл.1.6.10.

   

               Технічні параметри транзисторів.           Таблиця 1.6.10

Параметри К1531 GT15Q101 BC556 IRFP150 IRFD123 2N2907 К792

Напруга колектор-база

(втік-затвор)

500B 1200В 80В 100В 80В -60В 900В
Напруга колектор-емітер (втік-витік) 500B 1200В 65В 100В 80В -40В 900В

Напруга

база-емітер

(затвор-витік)

±30B ±20В ±20B ±20B -5В ±20B

Струм колектора

(втока)

15A 15А 100мА 43A 1.1А -600мА 3A

Імпульсний струм колектора

(втока)

60A 30А 200мА 170A 4.4А -1.2А 5A
Струм бази 2мА 20мА
Розсіювана потужність 150Bт 150Вт 0.5Вт 193Вт 1.5Вт 200мВт 100Вт
Вхідна ємність 1480пФ 1800пФ 10пФ 1750пФ 450пФ 30пФ 800пФ
Вихідна ємність 400пФ 3пФ 420пФ 200пФ 8пФ 250пФ
Допустима температура 150°C 150°С 150°С 175°С 150°С 150°С 150°С

Вибираємо діоди фірм Fairchild та International Rectifier.

Технічні параметри діодів.                                                    Таблиця 1.6.11

Параметри Uзв., В Імакс., А Ізв., мА Fмакс., кГц
PSOF107 300 0.3 0.005 40
1N4937 600 1.5 2 150
LL4148 100 0.2 0.005 300
LL414P 60 0.5 0.01 300
MUR860 600 10 20 200
MUR31 800 8 2 10
RUR30100 1000 30 1 300

Вибираємо мікросхеми фірм Unitrode, National Semiconductor, Intersil, STMicroelectronics.

В якості контролерів живлення  оберемо UC3842 фірми Unitrode, SG3525 фірми STMicroelectronics.

В якості мікросхеми стабілізатора напруги оберемо ІМС фірми STMicroelectronics.

Технічні параметри мікросхеми інтегрального стабілізаторів.     Таблиця 1.6.13

Тип

Вхідна напруга,

В

Напруга стабілізації, В Вихідний струм, А Температура, °С
78M05ST +30 +5 1.2 -55…+125

          1.7. Розрахунок друкованої плати.

1.7.1. Розрахунок площі друкованої плати.

Визначаємо стандартні розміри елементів які застосовуються і зводимо дані в таблицю. 1.7.1.

         Розміри елементів та їх сумарна площа.                              Таблиця. 1.7.1.

Назви груп компонентів

Кіль-

кість N,шт

Довжина

L,мм

Ширина

В,мм

Діаметр

D,мм

Площа

S=L*В,мм2

Площа N елем.

S*N,мм2

Діаметр

виводів

d,мм

1. 2. 3. 4. 5. 6. 7. 8.

Резистори

постійні 0.25...0.5Вт

119 4.7 1.5 7.05 838.95

Резистори

постійні 1...2Вт

10 12 5 60 600 0.85
Резистори змінні 3 3.1 3.6 11.16 33.48
Конденсатори керамічні 37 4.7 1.5 7.05 260.85
Конденсатори електролітичні 14 16 200.96 2813
8 20 314 2512
Транзистори 17 25 40 1000 17000 1.0
Діоди малої потужності 8 4.7 1.5 7.05 56.4 0.6
Діоди великої потужності 16 15 20 300 4800 1.2
Стабілітрони 5 4.7 2 9.4 47
ІМС SMD 6 14 12 168 1008
IMC DIP 5 10 8 80 400 1.0
Дроселі 6 42 22 924 5544 1.2
Трансформатори сигнальні 3 15 176 530 1.0
Трансформатори живлення 2 70 60 4200 8400 1.2
Вставка плавка 4 30 10 300 1200 1.2
Реле 2 50 20 1000 2000 1.0
Розєми 6 20 10 200 1200 0.85

Страницы: 1, 2, 3, 4, 5, 6


© 2010 Собрание рефератов