Рефераты

Курсовая работа: Проектирование оснований и фундаментов многоэтажного гражданского здания

3.7 Расчет конвективного пучка

Конвективными называют такие поверхности нагрева, в которых процесс передачи теплоты осуществляется путем конвективного теплообмена.

конвективные пучки получают теплоту не только путем конвективного теплообмена, но и теплоту прямого излучения топки. При расчете такой поверхности нагрева используют методику расчета конвективных поверхностей нагрева с учетом тепловосприятия прямого излучения топки.

Таблица 17. Тепловой расчет конвективного пучка

Величина Обозначение Формула или способ определения Единица Расчет
Полная площадь поверхности нагрева Н По конструктивным размерам (табл. II−9 [2])

м2

592,6
Диаметр труб d По конструктивным размерам мм 0,028
Средняя длина труб l По конструктивным размерам м 0,75
Поперечный шаг труб

s1

По конструктивным размерам м 0,064
Продольный шаг труб

s2

По конструктивным размерам м 0,04
Относительный поперечный шаг труб

s1/d

По конструктивным размерам - 2,29
Относительный продольный шаг труб

s2/d

По конструктивным размерам - 1,43
Размеры поперечного сечения газохода

A

B

По конструктивным размерам

м

м

2,3

2,88

Эффективная толщина излучающего слоя s

м 0,084
Температура газов перед конвективным пучком

u²т − из расчета топки

°С 1090
Энтальпия газов перед конвективным пучком

I²т − из расчета топки

кДж/м3

20768,49
Температура газов за конвективным пучком По выбору (стр. 53 [2]) °С 160
Энтальпия газов за конвективным пучком По I−u таблице

кДж/ м3

2705,5
Количество теплоты, отданное конвективному пучку

φ×(I¢ − I²)

кДж/ м3

18376,5
Средняя температура газов

uср

0,5×(u¢ + u²) °С 625
Коэффициент теплоотдачи конвекцией

αк

αн × Сz × Cs × Cф,

рис. 6−5 [2]

105,84
Суммарная оптическая толщина запыленного газового потока kps

(kгrn + kзлmзл) × p × s

60,98
Степень черноты излучающей среды a

1 − е − kps

0,12
Коэффициент тепловой эффективности ψ Стр. 48 [2] °С 0,8
Температура загрязнения стенки трубы

tст

tкип + Δt

°С 135
Коэффициент теплоотдачи излучением

αл

αн × a

11
Коэффициент теплоотдачи от газов к стенке

α1

ξ(αк + αл)

116,84
Тепловосприятие конвективного пучка

ε0

ψ×a1

92
Температурный напор на входе в пучок

Dtб

u¢-t¢ °C 940
Температурный напор на выходе из пучка

Dtм

u¢¢-t¢¢ °С 90
Средний температурный напор Δt Табл. 6−1 [2] °С 353
Расхождение расчетных тепловосприятий ΔQ

% 0,8

3.8 Сводная таблица теплового расчета котла и расчетная невязка теплового баланса

Таблица 18. Тепловой баланс котла

Величина Обозначение Единица Результат
Располагаемая теплота топлива

Qрр

кДж/м3

36764,6
Температура уходящих газов

uух

°С 160
Потери теплоты с уходящими газами

q2

% 6,99
КПД h % 90,6
Расход топлива на котел

Вр

м3/с

1,047

Топка

 

Теплота, вносимая воздухом

кДж/м3

20,7
Полезное тепловыделение

кДж/м3

36601,47
Температура газов на выходе из топки

u¢¢т

°С 1090
Энтальпия газов на выходе из топки

I¢¢т

кДж/м3

20768,49
Тепловосприятие

кДж/м3

16211,2

Конвективный пучок

Температура газов на входе °С 1090
Температура газов на выходе u¢¢ °С 160
Энтальпия газов на входе

кДж/м3

21152,67
Энтальпия газов на выходе I¢¢

кДж/м3

2705,5
Тепловосприятие Q

кДж/м3

18392,8

Невязка теплового баланса составила 1,8 %, расчет считаем верным.


4. Выбор оборудования

Таким образом, на основании расчетов тепловой схемы котельной предусматривается установка четырех водогрейных котлов КВ-ГМ-30-150. Для каждого котла устанавливается: дымосос Д-13,5x2, n = 750 об/мин с электродвигателем мощностью 55 кВт; дутьевой вентилятор ВД-15,5, n = 750 об/мин с электродвигателем мощностью 55 кВт.

Сетевые насосы водогрейных котлов являются ответственными элементами тепловых схем. Сетевые насосы выбирают по расходу сетевой воды G, т/ч. В котельной с водогрейными котлами и подогревателями сетевой воды должно быть установлено не менее двух сетевых насосов. Определив по расчету Gmax = 358,8 кг/с = 1291,6 т/ч.

Выбираю в качестве сетевых насосов три центробежных насоса WILLO-IL 150/320-37/4 (два рабочих, один резервный). Для покрытия летней нагрузки Grвс = 128,6 кг/с = 462,9 т/ч устанавливаем дополнительно два рабочих и один резервный центробежные насосы WILLO-IL 150/300-30/4.

Сетевые насосы устанавливаются на обратной линии тепловых сетей, где температура сетевой воды не превышает 70°С.

Рециркуляционные насосы устанавливают для повышения температуры воды на входе в котел путем подмешивания горячей воды из прямой линии теплосетей. Подача рециркуляционных насосов определена при расчете тепловой схемы. Gpeu = 67,2 кг/с. Выбираем два насоса (один резервный) WILLO-IL 100/5-21 BF.

Для восполнения утечек воды устанавливают подпиточные насосы. Количество воды для покрытия утечек из закрытых теплофикационных систем принимают равным 0,5% от объема воды в трубопроводах системы, а подача подпиточного насоса выбирается вдвое больше для возможности аварийной подпитки сетей. Выбираем два насоса (один резервный) MVI 410/PN 16 3.

Для подачи воды от источника водоснабжения котельной -водопровода жилого района - в систему водоподготовки, устанавливают сетевые насосы. Подача этих насосов определяется максимальной потребностью в химически очищенной воде и расхода ее на собственные нужды химводоочистки. Gсв = 5,55 кг/с. Выбираю два насоса (один резервный) WILLO-IL-E 80/9-48 BF R1.

Для обеспечения надежной работы котельной со стальными водогрейными котлами обязательно удаление из воды растворенных в ней коррозионно-активных газов - кислорода и свободной углекислоты. Расход деаэрированной воды равен 4,62 кг/с = 16,6 т/ч.

Выбираем вакуумный деаэратор: ДВ-18, производительностью 18 т/ч.

Для создания вакуума и удаления газов из деаэратора используют вакуумные насосы. Выбираем ВК-25 с подачей 4-50 м3/мин. Один рабочий и один резервный.

Подогреватели исходной и химочищенной воды:

Выбираем два водоводяных теплообменника ПВ-Z-l 1 с поверхностью нагрева 5,89 м и ПВ-Z-IO с поверхностью нагрева 6,9 м .


5. Охрана окружающей среды

В настоящее время с увеличением мощностей промышленных объектов, концентрацией жилых и общественных зданий вопросы охраны окружающей среды приобретают исключительное значение.

5.1 Вещества, загрязняющие окружающую среду

Основным источником образования вредных веществ при работе котельной являются котлоагрегаты. При горении газа в атмосферу поступают следующие вредные вещества:

-                   окись углерода;

-                   окислы азота;

-                   сернистый ангидрид;

5.2 Мероприятия по охране окружающей среды

При сжигании различных топлив, наряду с основными продуктами сгорания (СО2, Н2О, NO2) в атмосферу поступают загрязняющие вещества в твердом состоянии (зола и сажа), а также токсичные газообразные вещества ­­­– серный и сернистый ангидрид (SO2, SO3). Все продукты неполного сгорания являются вредными (CO, CH4, C2H6).

Окислы азота вредно воздействуют на органы дыхания живых организмов и вызывают ряд серьезных заболеваний, а также разрушающе действуют на оборудование и материалы, способствуют ухудшению видимости.

Окислы азота образуются за счет окисления содержащегося в топливе азота и азота воздуха, и содержатся в продуктах сгорания всех топлив. Условием окисления азота воздуха является диссоциация молекулы кислорода воздуха под воздействием высоких температур в топке. В результате реакции в топочной камере образуется в основном окись азота NO (более 95%). Образование двуокиси азота NO2 за счет доокисления NO требует значительного времени и происходит при низких температурах на открытом воздухе.

В воде NO практически не растворяется. Очистка продуктов сгорания от NO и других окислов азота технически сложна и в большинстве случаев экономически нерентабельна. Вследствие этого, усилия направлены в основном на снижение образования окислов азота в топках котлов.

Радикальным способом снижения образования окислов азота является организация двухстадийного сжигания топлива, т. е. применение двухступенчатых горелочных устройств. Поэтому в первичную зону горения подается 50-70% необходимого для горения воздуха, остальная часть воздуха поступает во вторую зону, т.е. происходит дожигание продуктов неполного сгорания.

Снижение температуры подогрева воздуха и уменьшение избытка воздуха в топке тоже уменьшает образование окислов азота, как за счет снижения температурного уровня в топке, так и за счет уменьшения концентрации свободного кислорода.

Защита воздушного бассейна от загрязнений регламентируется предельно допустимыми концентрациями вредных веществ в атмосферном воздухе населенных пунктов. Предельно допустимая концентрация (ПДК) вредного вещества в воздухе является критерием санитарной оценки среды.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


© 2010 Собрание рефератов